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ABSTRACT 

When designers create new forms they integrate both quantitative objective elements and 
qualitative subjective elements. However, users will generally react to these forms without 
knowing the intended Kansei integrated into them by the designer. Human beings are doted 
with a complex brain structure and it is argued that human attributes originate from three 
different levels of the brain: the visceral level; the behavioral level and the reflective level. 
This paper focuses upon the visceral level of reaction by automatically building a link 
between geometric properties of non-functional 3D shapes and their perception by observers. 
The link between geometry and human perception is created using a genetic learning 
algorithm combined with a fuzzy logic decision support system. Human evaluations of the 
non-functional 3D shapes against two contrary perception adjectives (massive versus 
lightweight) are used as the learning data set. The non-functional 3D shapes were designed 
by engineering design students from the Technical University of Denmark who were asked 
to design non-functional 3D shapes evoking either the adjective massive or light. Eight fuzzy 
models were developed: three (3) models constructed manually by the author and five (5) 
genetically generated. The fuzzy models were constructed using different sets of inputs of 
quantitative geometric properties. Combination of the different inputs resulted in different 
sets of fuzzy rules that can eventually be used as design guidelines for designers. The results 
obtained and presented in this paper are very promising. Correlations as high as 99% 
between fuzzy and human perception were obtained along with errors as low as 0.14 on a 
scale ranging from -3 to 3. 
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1. INTRODUCTION 

Designers can integrate quantitative objective elements such as functionality, 
manufacturability, weight, and other technical properties into their product more easily than 
subjective qualitative elements. Furthermore, functionality and usability seem no longer 
sufficient in a product’s success [1] and subjective responses to the product by the customer 
greatly influence its success [2]. It is now well accepted that aesthetics are a contributing but 
subjective factor in determining the success of a product, and designers should include 
characteristics that are visceral or engage the senses [3]. Additionally, according to [4], 
observers (humans) are doted with a complex brain structure and a variable preference 
mechanism, some wired at birth and some developed through life experience. Andrew Ortony et 
al. suggest that these human attributes are generated from three different levels of the brain: the 
visceral level (the automatic, prewired layer), the behavioral level (the part that contains the 
brain processes that control everyday behavior) and the reflective level (the contemplative part 
of the brain) [5-6].  

It was reported that designers are not always successful in conveying the desired message 
through aesthetical form. This highlights the difficulty for users/designers to link emotions 
through words to design characteristics [7]. To achieve this link several studies aimed at 
identifying relations between the characteristics of a product’s shape and its emotional 
message/perception have been carried out. A study based upon perceptual psychology 
(perception of “safety”, “friendliness” of a machine/car) was proposed in [8-9]. Design and 
computer science approaches are employed in [10-13]. However, in these experiments no 
systematic and precise specification of a correspondence between product elements and 
emotional terms was provided. In [14], a study using Kansei engineering and neural networks to 
cluster objects that have a similar perception among users by focusing on color was carried out. 
Fuzzy Logic was used for validation of aesthetics sensitivity in automatic generation of roof 
geometries [15] and to evaluate building aesthetics based on specific features [16], however 
they did not link general geometric properties to an emotional context. This paper focuses on the 
visceral level of reaction by building a link between the geometric properties of non-functional 
3D shapes and the perception of these shapes by users/observers on a visceral level. The 
research objectives and methodology are discussed in detail in the following sections. 

2. RESEARCH OBJECTIVES 

The aim of the research presented here is to propose computer models that designers can use 
to assess the perception of their product design from a shape perspective. This will be first done 
through identification of the characteristics of a form that can be used to evoke a specific 
perception in users. Another objective of the research also aims to understand the influence of 
these characteristics and their co-influences in regards to perception. These characteristics are 
used as inputs variables to fuzzy knowledge bases (FKBs) that can be used to evaluate the 
ability of the forms to evoke a particular perception. The research presented here can be 
considered an extension of a previous study where 3 manual multiple input / single output FKBs 
were developed [17-18]. Both manually and genetically generated FKBs are developed and their 
efficiency in reproducing human perception is evaluated. The manually constructed models 
assess one input variable at a time while those genetically generated assess a combination of 
input variables along with the fuzzy rules that map the relationships between the input variables 
and the targeted perception. 



 

 

 

 

 

 

The methodology used is based on the analogy of communication presented in [11], 
combined with a design and computer science approach in order to create the link between 
the space of design variables and the space of aesthetic characteristics. A 6-step methodology 
has been employed: 1) students created forms (using foam) which represent a particular set 
of perception, students were allowed to use color, 2) CAD models equivalent to the foam 
form models were created and colored gray, 3) geometric properties were identified and used 
as input premises to the FKBs, 4) for each single characteristic the FKB was manually 
constructed; 5) genetically generated FKBs (rule base and data base) were created using all 
combinations of the identified geometric characteristics; 6) an evaluation was conducted with 
users to serve as the comparison to the fuzzy predictions. The human perception of the forms 
was used as a learning set to automatically generate FKB equivalents. In this paper, evaluation 
of the models was conducted on a pair of contrary adjectives namely: massive and light. A 
group of users were shown different shapes designed to appear either massive or light and were 
asked to rate the massiveness or lightness of each of the shapes. The users did not know which 
shape was supposed to be massive or light. 

3. CREATING OBJECTS USING TERMS AS CONSTRAINTS 

 In this research, 3D objects were created to describe given emotions by 60 engineering 
design students working individually. Each student was presented with a set of adjectives 
describing a certain perception/emotion. The students’ task was to create a shape that best 
represented the given emotions. The terms given were massive and static; light and friendly; 
dynamic and integrated and; aggressive and edgy. Only massive and light are considered in this 
paper. The students were provided with cubes of foam (200mm x 200mm x 200mm), and 
provided with one of the four sets of adjectives. Hence around 12-15 models representing each 
set of terms were produced. The students were free to use color on their forms, however in this 
paper 3D CAD grayscale equivalents of the shapes are used, since FKBs, described in the 
following sections, consider the form but not the color. Six of the 3D objects created to express 
massiveness were selected, together with five expressing lightness. Figure 1 shows the different 
shapes selected. Shapes 3-7 were shapes that were designed to be light with the remainder 
designed as massive. 

 

Figure 1: 3D non functional shapes considered for the study 



 

3.1. Mapping shape Parameters and Aesthetic Characteristics 

In this section, mapping of shape parameters to the aesthetic characteristics of the objects is 
described. The parameters linked to Massive/Light are: Volume/Surface ratio (VSR); Centre of 
gravity ratio (CGR) and Height/Width ratio (HWR). These parameters were defined as a result 
of a visual analysis of the 3D objects. 

3.2. Universe of discourse of the input premises 

Geometric parameters form the basis of the inputs of FKBs and are described as follows: 

Volume/Surface Ratio (VSR): in order to get a non-dimensional normalised value, the 
VSR of the shapes was compared to the maximum VSR the design students worked with; 
i.e. the 200x200x200mm cube. The cube’s VSR is given by L/6 (L being the length of one 
side of the cube); hence the VSR is given by: 

        (2) 

Centre of Gravity Ratio (CGR): the centre of gravity is given by the z coordinate of the 
centre of gravity of the shapes, in the direction that it was presented during the 
evaluation. In order to have a normalised ratio the z coordinate was compared to the 
maximum possible value (V); hence the CGR is given by: 

         (3) 

Height/Width Ratio (HWR):  HWR is obtained by dividing the maximum height of the 
shape by the maximum width in the direction it was presented to the evaluators, as in 
Figure 1. However to put this ratio in FKB, one has to normalise the premise (0 to 100%), 
and in order to achieve this one can use the analogy of scanning a photograph where a 
height/width ratio of 1.5 is considered tall. This means that each of the shapes’ HWR is 
measured against 1.5, and if higher it is equalled to 1.5; hence, HWR will be evaluated as 
follows: 

        (4) 

Table 1 summarizes the obtained results for VSR, CGR and HWR per shapes. 

4. HUMAN PERCEPTION 

The human perception of the Lightness/Massiveness of the 11 shapes was carried out by a 
group of 20 people. To minimize differences due to different perceptions amongst different user 
groups, the participants selected for the evaluation all had an engineering or industrial design 
background, either as undergraduate or graduate students, or working in product development. 
A group of 20 students (PhDs and Masters) and professional designers, without knowledge of 
the purpose of the study, evaluated each shape. The group consisted of 3 females and 17 males 
aged between 24 and 66. Each object was illustrated with the minimum number of views from 



 

 

 

 

 

 

the CAD models in order to illustrate the shape, i.e. between 2 and 4 views, depending on the 
level of symmetry.  In order to exclude the influence of colors, textures, etc. on the emotional 
perception of an object and to keep the focus on the link between geometry and perception, the 
illustrations were all in grayscale. The participants evaluated the eleven shapes using semantic 
scales ranging from Very Light to Very Massive. A very light shape would be rated as -3, a very 
massive shape as 3, and a rating of 0 was given for a shape which was perceived as neutral. The 
order in which the shapes were presented to the participants was randomized to minimize any 
influence of the ordering of the shapes.  

Table 1: Shape Characteristics & Evaluations of the users 

Shape Geometric Characteristics Human Rating: V. Light to V. Massive  

 
VSR 

[%] 
CGR 

[%] 
HWR 

[%] 
HWR [%] HWR [%] 

1 41.12 50.01 45.98 1.65 0,54 

2 31.40 17.05 48.00 0.85 1,53 

3 02.87 01.08 53.85 -2.25 0,79 

4 14.58 50.00 55.55 -1.40 0,94 

5 31.42 17.71 44.44 1.20 1,06 

6 62.83 02.50 09.88 0.50 1,39 

7 50.94 38.95 66.67 0.00 1,17 

8 93.66 50.00 78.79 2.68 0,58 

9 41.44 50.79 49.38 2.00 0,92 

10 59.50 25.00 41.27 1.79 0,79 

11 53.61 25.01 38.89 

 

1.10 1,07 

 

The average response from the 20 participants was calculated and used both for learning of 
the FKBs and as the gold standard to compare to the fuzzy logic model; standard deviations 
were also calculated for each of the shapes (Table 1 left). It is important to notice that the 
human evaluators agreed in most cases with the designers’ intentions in regards to massive/light 
perception, apart from shape 7 that was rated neutral instead of light. 

5. CONSTRUCTION OF THE FUZZY KNOWLEDGE BASES 

FKB is composed of a data base and a rule base. In this paper the constructed FKBs are of the 
SISO (single inputs/single output) and MISO (multiple inputs/single output) types. SISO FKBs 
take as inputs the geometric variable VSR, HWR and CGR individually while MISOs are 



 

genetically generated and consider all possible combinations of the geometric variables. Eight 
(8) different FKBs are developed in this paper, with the following sets of input variables:  

1. Manually (SISO): a) VSR, b) CGR and c) HWR 
2. Automatically using a genetic algorithm (MISO): a) VSR, CGR and HWR (2 

different FKBs), b) VSR and CGR, c) VSR and HWR and d) CGR and HWR. 
The goal of using these combinations is to find the near-optimal FKB that matches human 

perception. Furthermore, if more than one FKB is accurate in reproducing the human 
perception, it will give the designers alternatives concerning which parameters to control in 
order to alter and/or assess the perception of their models.  

5.1. Manual construction of the FKBs 

Manual construction of the FKBs was carried out by first defining the databases and then 
defining the rule bases as described bellow. 

5.1.1. Defining the database 

The database is composed of the inputs/outputs of the FKB. The manually constructed FKBs 
use one input and they are similar where each of the inputs has five membership functions 
distributed evenly; the semantics linked to each input are as follows: 

VSR: Very Hollow, Hollow, Average, Dense and Very Dense 
HWR: Very Fat, Fat, Average, Slim (Tall) and Very Slim (Very Tall) 
CGR: Very Low, Low, Average, High and Very High 

The three FKBs share the same output premise with five membership functions ranging from 
Very Light to Very Massive. Figure 2 illustrates the three manually constructed FKBs. 

5.1.2. Defining the rule base 

The rule base is manually defined to map the relationships between the membership functions 
on the input premises and the membership functions on the output premise. The rule base 
contains 5 ‘If Then’ rules. It is believed by the author that a Very Hollow, Very Slim or Very 
High shapes will be perceived as Very Light while a Very Dense, Very Fat or Very Low shape 
will be perceived as Very Massive, the rest of the rules fill-in the middle values. 

 

Figure 2: VSR, CGR and HWR SISO FKBs (the data bases) 

5.2. Automatic generation of the FKBs 

Automatic generation of FKBs was performed using a specialized genetic algorithm (GA) 
named Real/Binary Like Coded GA (RBCGA). Each individual of a population is a potential 
FKB, where four basic operations of RBCGA learning are performed; reproduction, mutation, 



 

 

 

 

 

 

evaluation and natural selection. RBCGA developed by the author combines a real coded and a 
binary coded GA. The reproduction mechanisms are a multi-crossover defined in [21] and a 
uniform mutation [22]. 

5.2.1. Performance Criterion of the RBCGA 

In this paper, the performance criterion is the accuracy level of a FKB (approximation error) 
in reproducing the outputs of the learning data (belonging to the design context). The 
approximation error is a combination between the !RMS, measured using the RMS error method 
and the absolute error !ABS. The next two equations detail these errors. 

      

 (5) 

While the absolute error is measured as follows: 

       (6) 

where N represents the size of the learning data. The fitness value ! is evaluated as a 
percentage of the output length of the conclusion l, i.e. 

        (7) 

5.2.2. Genetic Generation of the Database and the Rule Base 

To generate the FKBs using the RBCGA one has to set up the maximal complexity allowed, 
the multi-crossover probability and the mutation probability. In this paper the maximal 
complexity is 6 fuzzy sets per input premise and 16 fuzzy sets on the output; with these numbers 
the RBCGA can select from several tradeoffs. The reproduction probabilities are set to: 90% 
multi-crossover, 10% simplification rate and 5% mutation, more details on these mechanisms 
are given in [21]. This simplification is used in order to put emphasis on generalization of the 
fuzzy model since the learning starts with a possible 63 (216) or 62 (36) possible rules. The 
population size is set to 200 and the number of generations to 200. Each run was repeated three 
times to ensure robustness of the learning process. At the end of the learning the best individual 
was selected according to the highest !. The selected FKBs for the 4 different combinations are 
as follows: 

a) Three Inputs: VSR, CGR and HWR (FKB_VCH) 

FKB_VCH is a 3 input / one output FKB. From the last generation of genetic learning two 
FKBs were selected; the first most accurate one (FKB_VCH1) with 3 fuzzy sets on each 
premise and 27 fuzzy ‘If Then’ rules, and the simplest one with 2 fuzzy sets on each premise 
and 8 fuzzy ‘If Then’ rules (FKB_VCH2). They respectively have 9 and 5 membership 
functions on the output. Figure 3 illustrates both FKB_VCHs. One can notice that the 



 

membership functions are not evenly distributed on the output premise however they do cover 
the entire range from very light to very massive. Using the center of gravity as a defuzzification 
mechanism along with the fuzzy rules enables us to get perception values between these two 
extremes. 

b) Two Inputs: VSR & CGR (FKB_VC) 

FKB_VC is a 2 input / one output FKB. Genetic learning produced a near optimal solution 
with 3 fuzzy sets on each premise and 9 fuzzy If Then rules, 5 fuzzy sets are used on the output. 
Figure 4 illustrates FKB_VC and one can notice that for CGR the average value is centered 
close to 1/3. This value corroborates the known principle of stability for triangles; a shape is 
considered stable with a center of gravity situated at 1/3 of its height; a principle used in the 
manual approach presented in [18]. 

  

Figure 3: FKB_VCH1 & FKB_VCH2 

c) Two Inputs: VSR & HWR (FKB_VH): FKB_VH is a two input / one output 
FKB. Genetic learning produced a near optimal solution with 3 fuzzy sets on each 
premise and 9 fuzzy If Then rules, 5 fuzzy sets are used on the output. Figure 5 
illustrates FKB_VH, and one can notice the similarity to FKB_VC (slightly different 
in the distribution of the membership function on the output premise). One could 
conclude that in the context of this paper the combination VSR/CGR and 
VSR/HWR influence similarly the perception of mass in non-functional 3D shapes. 

d) Two Inputs: HWR & CGR (FKB_HC): FKB_HC is a two input / one 
output FKB. Genetic learning produced a near optimal solution with 4 fuzzy sets on 
each premise and 16 fuzzy If Then rules, 8 fuzzy sets are used on the output. Figure 6 
illustrates FKB_HC. 



 

 

 

 

 

 

   

Figure 4: FKB_VC Figure 5: FKB_VH Figure 6: FKB_HC 

6. VALIDATION OF THE FKBS 

The FKBs were evaluated using the 11 different shapes (6 massive + 5 light designs). Ideally, 
low scores for the light designs and high ones for the massive designs were expected if the 
FKBs were to correlate successfully to the users’ perception. The VSR, HWR and CGR values 
summarized in Table 1 are submitted, as an observation file, to the 8 FKBs developed above. 
The outputs of the fuzzy models will assess the predicted level of massiveness/lightness of the 
shapes. Table 2 summarizes the fuzzy prediction of the 8 FKBs proposed in this paper versus 
the (human) perception of the shapes, while Table 3 reports the correlation values along with the 
error profiles of the fuzzy predictions versus human perception.  

Table 2: Evaluation of the users vs. fuzzy predictions 

SISO FKBs 
(Manual) 

MISO FKBs (Automatic Generation) 
Percepti

on 
HW

R 
VS

R 
CG

R 
FKB_VC

H1 
FKB_VC

H2 
FKB_V

C 
FKB_V

H 
FKB_H

C 

1.65 0.2
4 

-
0.53 

-
0.00 

1.70 1.03 1.73 1.75 1.47 

0.85 0.1
2 

-
1.12 

1.9
8 

0.97 -0.11 1.06 0.81 1.12 

-2.25 -
0.23 

-
2.83 

2.9
3 

-2.25 -1.80 -2.50 -2.32 -2.25 

-1.40 -
0.33 

-
2.12 

0.0
0 

-1.35 -0.53 -0.97 -1.31 -1.31 

1.20 0.3
3 

-
1.11 

1.9
4 

1.00 0.03 1.05 0.87 1.21 

0.50 2.4
1 

0.7
7 

2.8
5 

0.54 0.49 0.81 0.47 0.43 

0.00 - 0.0 0.6 0.01 0.37 0.46 -0.05 0.07 



 

1.00 6 6 

2.68 -
1.73 

2.6
2 

0.0
0 

2.75 2.42 2.70 2.68 2.66 

2.00 0.0
8 

-
0.51 

-
0.05 

1.80 0.88 1.89 1.75 1.75 

1.79 0.5
2 

0.5
7 

1.5
0 

1.57 1.16 0.98 1.53 1.56 

1.10 0.6
7 

0.2
2 

1.5
0 

1.30 1.04 0.98 1.55 1.47 

Table 3: Correlation & Error Profiles of the Fuzzy Predictions 

 SISO FKBs (Manual) MISO FKBs (Automatic Generation) 

FKBs 
HW

R 
VSR CGR 

VC
H1 

VC
H2 

VC VH HC 

Correlation -0.04 0.77 -0.40 0.99 0.90 0.97 0.99 0.99 

Max ABS 
Error  

4.41 2.51 5.18 0.21 1.17 0.81 0.45 0.37 

Min ABS 
Error  0.43 0.06 0.29 0.00 0.01 0.01 0.00 0.00 

RMS Error 1.86 1.46 2.15 0.13 0.71 0.35 0.21 0.18 

Mean ABS 
Error 1.55 1.16 1.68 0.10 0.59 0.27 0.15 0.14 

Average Error 1.71 1.31 1.92 0.12 0.65 0.31 0.18 0.16 

 

From Table 3 one can see that CGR and HWR are not good indicatives of the perception of 
massive/light, since the correlation is low and the average error is the highest of the 8 FKBs. 
VSR as a sole indicator predicted the perception with a 77% correlation, however because of the 
high error (1.31) one can see in Figure 7 that 5 out of 11 shapes where predicted outside one 
standard deviation from the human perception. From these results, one can conclude that it is 
difficult to predict the perception of massiveness using only one of the geometric properties 
identified in this paper namely: HWR, VSR, CGR, however of these three; VSR has the highest 
influence on the perception if used individually. 

When combining VSR, HWR and CGR to create MIMO FKBs, one can easily see from 
Table 3 that the error levels went down drastically with the highest value for the average error at 
0.65 while the lowest correlation is 90%, both obtained by FKB_VCH2. FKB_VCH1 performed 
best when considering both the correlation level and error profiles; it takes into account all three 
identified physical properties as inputs (VSR, CGR and HWR) and uses 27 fuzzy rules. From a 
practical point of view and in the perspective of using the fuzzy rules as design guidelines by a 
human designer, 27 fuzzy rules might be too many. The alternative, while still using the three 
inputs, is FKB_VCH2 that uses only 8 rules. However as one can see in Figure 8, FKB_VCH2 
prediction has shape 1 and 9 outside one standard deviation from human perception. This is 



 

 

 

 

 

 

predictable for two reasons: firstly; the absolute errors are higher and secondly; using simpler 
FKBs increases generality but decreases precision [23]. 

The other possibility for reducing the complexity (number of rules) of the FKBs is to use 
fewer inputs. FKB_VC, FKB_VH and FKB_HC, use two inputs and they reproduced human 
perception with very high correlation levels ranging from 97% to 99% and low error values. As 
illustrated in Figure 9, all three FKBs satisfactorily predicted the human perception of 
massiveness; however FKB_VC and FKB_VH use 9 fuzzy rules in comparison to 16 used by 
FKB_HC. The low number of rules makes it easier for a human to understand and follow the 
rules as design guidelines. However, if one uses the FKBs as decision support models then 
FKB_VC, FKB_VH and FKB_HC are interchangeable and it depends on which parameters the 
designers prefer to alter. 

 
 

Figure 7: Human Vs FKB_VSR prediction Figure 8: Human Perception vs. FKB_VCH1& 
FKBC_VCH2 Prediction 

 

Figure 9: Human Perception vs. FKB_VH, FKBC_VC & FKBC_HC Prediction 

7. CONCLUSION 

This paper presented genetically generated fuzzy decision support models for the prediction 
of human mass perception in 3D non-functional shapes. Three physical properties were used as 



 

input combinations for the fuzzy logic models to evaluate the lightness/massiveness of the 
shapes. Three Single Input and Single Output fuzzy models were manually constructed as an 
attempt to model the link between mass perception and one physical property of the shapes.  

From the validation results, it was concluded that it was not feasible to properly predict mass 
perception using only one of; VSR, CGR or HWR individually. However out of these three 
parameters, the volume surface ratio (VSR) has the most influence by its own. Combination of 
the three physical properties as inputs for the fuzzy models provided a very precise prediction of 
mass perception but with a relatively high number of fuzzy rules. Using only two inputs (3 
different combinations) proved effective for predicting mass perception. The results shown in 
this paper confirm the link between the physical characteristics of a form and how it is 
perceived by humans/users. The four genetically generated Multiple Inputs Single Output fuzzy 
models developed in this paper can assist designers in understanding how a form may be 
perceived by users and how they can change certain geometric ratios to change the perception 
induced by their product. Additionally, they can alter or evaluate the perception of massiveness 
of their designed shapes by influencing a combination of several physical properties at the same 
time. They can choose to either work with: (VSR, HWR and CGR), (VSR and CGR), (VSR and 
HWR) or finally (HWR and CGR). However in order to make the fuzzy models even more 
robust, more shapes would be needed for learning. Hence, future sets may be supplemented 
through shapes deliberately created. Ideally a first sub-set should be used for learning a second 
subset for cross-validation, while the last should be used for validation which was not done here 
because only 11 models were available. 

8. ACKNOWLEDGMENTS 

The author thanks all the participants to the experiment conducted in this paper. 

REFERENCES 

1. Helander, M. G., and Khalid, H. M., Affective and pleasurable design. In G. 
Salvendy (Ed.), Handbook of human factors and ergonomics (3rd ed., pp. 543-572). 
Hoboken, NJ: John Wiley & Sons, 2006.  

2. Henson, B., Barnes, C., Livesey, R., Childs, T., and Ewart, K., Affective 
consumer requirements: A case study of moisture packaging, Concurrent Engineering: 
Research and Applications, 14(3), pp. 187-196, 2006 

3. Norman, D.A., Emotional Design: Why We Love (or Hate) Everyday 
Things, Basic Books, New York, 2004. 

4. Norman, D., Attractive Things Work Better, Emotion and design. 
Interactions Magazine, ix (4), 36-42, 2002. 

5. Norman, D. A., Ortony, A., & Russell, D. M., Affect and machine design: 
Lessons for the development of autonomous machines. IBM Systems Journal, 42 (1), 38-
44, 2003. 

6. Ortony, A., Norman, D. A., & Revelle, W. Effective functioning: A three 
level model of affect, behavior, and cognition. In J.-M. Fellous & M. A. Arbib (Eds.), 
Who Needs Emotions? The Brain Meets the Machine. New York: Oxford University 
Press, 2005. 



 

 

 

 

 

 

7. Ahmed, S., and Boelskifte, P., "Investigation Of Designers Intentions and a 
Users’ Perception of Product Character." Proceedings of Nordesign, Reykjavik, Iceland, 
2006. 

8. Lebbon, C. and McDonagh-Philp, D.C., Exploring the Emotional 
Relationship between Users and Products, Proc. of Designing for the 21st Century II: 
An International Conference on Universal Design, Rhode Island, USA, 2000.  

9. Reid, T., Gonzalez, R. and Papalandros, P., A Methodology for Quantifying 
the Perceived Environmental Friendliness of Vehicle Silhouettes in Engineering Design, 
CD-Version, ASME IDETC/CIE, San-Diego, USA, 2009. 

10. Wallace D.R., and Jakiela, M.J., Automated Product Concept Design: 
Unifying Aesthetic and Engineering, IEEE Computer Graphics & Applications, pp. 66-
75, July 1993. 

11. Van Bremen E.J.J., W.G. Knoop, I. Horvath, J.S.M. and Vergeest, B. 
Pham, Developing a Methodology for Design for Aesthetics Based on Analogy of 
Communication, Proceedings of the 1998 ASME Design Engineering Technical 
Conferences, Atlanta, Georgia, Sept. 13-16, 1998, USA, DET98/DAC-5614.  

12. Hsiao S.W. and Wang H.P., Applying the Semantic Transformation Method 
to Product Design, Design studies, Vol. 19, No. 3, London, Elsevier Science Ltd, 309-
330, 1998. 

13. Smyth S.N. and Wallace, D.R., Towards the Synthesis of Aesthetic Product 
Form, Proceedings of DETC'00, ASME 2000 Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference Baltimore, 
Maryland, September 10-13, , DETC2000/DTM-14554, 2000 

14. Jianning S. and Fenqiang, L., Research of Product Styling Design Method 
Based On Neural Network; Third International Conference on Natural Computation, 
Volume 2,  pp. 499 – 504, 2007 

15. Tsutsumi, K., Sasaki, K., Study on Shape Creation of Building's Roof by 
Evaluating Aesthetic Sensibility, Mathematics and Computers in Simulation, Vol. 77, pp. 
487–498, 2008.  

16. Norikazu, I.; Hiroshi, M.; Yukihiro; K., Tomomi, T.; Daisuk, Y., Building 
exterior design system by hierarchical combination fuzzy model, Annual Conference of 
the North American Fuzzy Information Processing Society - NAFIPS, VOL. 5, p 2573-
2578, 2001. 

17. Achiche, S., Ahmed, S., Mapping Shape Geometry and Emotions Using 
Fuzzy Logic, Proceedings of ASME IDETC/CIE 2008, CD Version, NYC, USA, 2008. 

18. Achiche, S. and Ahmed, S., Modeling Perception of 3D Forms Using Fuzzy 
Knowledge Bases, Proceedings of ASME IDETC/CIE 2009, CD ROM Version, San 
Diego, USA, 2009.  

19. Balazinski, M, Achiche, S. and Baron, L., Influences of Optimization Criteria 
on Genetically Generated Fuzzy Knowledge Bases, International Conference on 
Advanced Manufacturing Technology, pp. 159-164, 2000. 

20. Achiche, S., Baron, L. and Balazinski, M., Real/Binary Like Coded Genetic 
Algorithm to Automatically Generate Fuzzy Knowledge Bases, IEEE Fourth 
International Conference on Control and Automation, Montreal, Canada, pp. 799-803., 
2003. 

21. Achiche, S., Balazinski. M. and Baron, L., ''Multi-combinative Strategy to 
Avoid Premature Convergence in Genetically-generated Fuzzy Knowledge Bases'', 
Journal of Theoretical and Applied Mechanics, No. 3, Vol. 42, pp.417-444, 2004. 

22. O. Cordòn, F. Herrera, P. Villar, ''Analysis and Guidelines to Obtain a Good 
Uniform Fuzzy Partition Granularity for Fuzzy-rule Based Systems using Simulated 
Annealing'', International Journal of Approximate Reasoning, pp. 187-216, 2000. 



 

23. Baron, L., Achiche, S., Balazinski, M., A Genetic-Based Learning Process 
for Fuzzy Decision Support Systems, International Journal of Approximate Reasoning, 
Vol: 28, issue: 2-3, pp. 125-148, 2001. 


