KEER2010, PARIS | MARCH 2-4 2010
INTERNATIONAL CONFERENCE ON KANSEI ENGINEERING AND EMOTION RESEARCH 2010

KANSEI EVALUATION OF BEHAVIORS
OF ROBOT WHICH RECOGNIZES
DIFFERENCE BETWEEN USER’S AND
ITS OWN FIELDS OF VIEW

Jun-ichi IMAI™ and Masahide KANEKO*

* The University of Electro-Communications, Japan.

ABSTRACT

Generally there are many objects which can cause visual occlusion in daily living spaces
for humans, where human-symbiotic robots will work. Consequently, it will often occur that
a robot cannot see an object by occlusion while a user can, and vice versa. In such situations,
it is desirable for the robot to be able to interact with a user while recognizing a difference
between their fields of view. We expect that such a “considerate” robot will be friendlier and
more pleasant to users. In this paper, we carry out experimental subjective evaluations of im-
pressions which such robot gives to humans during human-robot interactions to verify our
expectation. We have developed a robot which can estimate a user’s and its own fields of
view to behave appropriately while recognizing the difference between their perceptions in
our previous works. Participants are requested to observe the interactions in occlusion envi-
ronments and to subjectively evaluate impressions which they receive from the developed
robot’s behaviors. The experimental results show that the robot which can guess a user’s per-
ception and understand differences between their recognition of situations can give “familiar”
impressions to humans. This fact is expected to be one of fundamental recommendations for

designing much friendlier interactions with robots and other intelligent systems.
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1. INTRODUCTION

Human-symbiotic robots, which can communicate with humans and support their activi-
ties, have been increasingly studied in recent years (e.g. [1-3]). They will work mainly in
daily living spaces for humans, such as offices, homes and public spaces. In these environ-

ments, generally there are many objects which can cause visual occlusion. Since a robot and a
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Figure 1: Examples of interactions between a robot and a user in occlusion environments.

user will stand at different positions, it will often occur that one cannot see an object by oc-
clusion while the other can. In such situations, it is desirable for the human-symbiotic robot
to be able to interact with a user while considering a difference between their fields of view
and putting itself in his or her position. Examples of such interactions are shown in Figure 1.
In Figure 1 (a), a robot is expected to recognize that boxes are out of a user’s view and to
prompt the user to find the boxes by giving appropriate directions. In Figure 1 (b), a robot is
expected to understand that a box cannot be seen from its own position and to move to the
appropriate position autonomously. We expect that such a “considerate” robot will be friend-
lier and more pleasant to users. However, there have been few studies which deal with these

problems explicitly so far. The aim of this paper is to verify this expectation.

In our previous works, we have developed a robot which can estimate a user’s and its own
fields of view to behave appropriately while recognizing the difference between their percep-
tions [4, 5]. In this paper, using this developed robot, we carry out experimental subjective
evaluations of impressions which the robot gives to humans during human-robot interactions.
The robot performs several tasks with one user in real occlusion environments. Participants
who observe the interactions are requested to subjectively evaluate impressions which they
get from the robot’s behaviors by questionnaires. Based on their evaluation results, we dis-

cuss the effectiveness of the robot which can recognize the difference in fields of view.

2. ROBOT WHICH CAN ESTIMATE USER’S AND ITS OWN FIELDS
OF VIEW

In this section, we briefly review the robot which can estimate a user’s and its own fields of

view developed in our previous works [4, 5].

2.1. Estimation of User’s State

To estimate a user’s view, the user’s current state is firstly estimated from an image ob-
tained by a stereo camera. The estimation is achieved by two steps. First the user’s head posi-

tion is detected, and then its orientation is estimated.
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Figure 2: An example of estimation of user’s state.

We use the particle filter [6] for tracking a position of the user’s head. The user’s head in
the input image is modeled by an ellipse. The position of the ellipse for the user’s head is de-
tected using skin color information [7], hair color information and distance information (ob-
tained by the stereo camera) in and around the ellipse. Based on the specified head position,
the orientation of the user’s head is estimated. We use a head model using the SIFT features
[8] for the estimation. In this method, the user’s head is modeled by a cylinder. The center of
the user’s face (the position of the user’s nose) is defined as 0 [rad] and the back of the head
is defined as *m [rad]. SIFT feature points extracted from the specified head image are
stored with their angle positions measured from the center of the face. Figure 2 shows an ex-
ample of estimation of the user’s head orientation. Figure 2 (a) shows an example of ex-
tracted feature points from the specified head image. We can estimate the user’s head orienta-
tion by performing matching procedure between the extracted feature points and stored ones
in the head model. Figure 2 (b) shows an example of this process. The ellipse in Figure 2 (b)
denotes the specified position of the user’s head. The angle position of the center of the head
image measured from the center of the face can be calculated using values of 01, 62, ... and

the positions in the head image of their corresponding feature points.

This method can estimate the user’s head orientation even in the case that the user does not
show his or her frontal face to the camera. The head model can be created and updated in the
online fashion without any prior learning if tracking and estimation is started in the state that

the user faces to the camera.

Furthermore, the orientation of the user’s body is estimated. The 3D positional data under
the user’s head (i.e. the user’s body) obtained by the stereo camera is projected onto the
quantized x-z plane. The user’s body on the x-z plane is modeled by a slant ellipse. We can
determine the body orientation as the slant of the ellipse obtained by fitting procedure to the
projected positional data. Although the body orientation is not necessary for the view estima-

tion, it is used in the experiments described in Section 3.

2.2. Environmental Recognition

Another main part of the view estimation is the environmental recognition. Accurate rec-
ognition of surrounding environments, which can cause occlusion, is required to estimate the
user’s and the robot’s fields of view. However, it is difficult to recognize all objects which ex-
ist in the surrounding. So the robot attempts to extract vertical planes in its surrounding in-
stead. This approach is valid because vertical planes are very common in artificial environ-

ments and it is highly probable that they are major causes of occlusion.
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Figure 4: Examples of estimated fields of view.

We use the probabilistic Hough transform [9] to detect vertical planes for the environ-
mental recognition. Figure 3 shows an example of the recognition. Figure 3 (a) is an original
image. First, all 3D positional data obtained by the stereo camera is projected onto the quan-
tized x-z plane (Figure 3 (b)). The vertical axis of Figure 3 (b) denotes the depth from the
camera. The center of x-axis corresponds to the position where the robot stands. Then, the x-
z plot is binarized to remove pixels except for those corresponding to vertical planes (Figure
3 (¢)). Finally line segments on the resultant x-z plane are detected using the probabilistic
Hough transform. Detected line segments are shown in Figure 3 (d). These line segments

correspond to the vertical planes such as a panel, a white board and a bookshelf.

2.3. Estimation of Horizontal Fileds of View

The robot’s and user’s horizontal fields of view are estimated by combining the results of

the estimation of the user’s head orientation and the environmental recognition.

The robot’s view and blind spots are estimated from the positional relation between the es-
timated surrounding environment and the robot itself. Similarly, the user’s view is estimated
from the positional relation between the estimated surrounding environment and the user’s
position, and the user’s head orientation. In this paper, we suppose that the view angle of

human is 27t / 3 [rad] (120°). That is, objects in the outside of the range [0 -/ 3, 0 + 7w/ 3]

are out of the user’s view.

Figure 4 shows examples of estimated fields of view. In Figure 4 (a), there are a panel, a
white board and walls around the user. Figure 4 (b) and (c) show the estimated robot’s and

user’s horizontal fields of view respectively. They are the bird’s-eye images viewed from just



above. Gray line segments represent the surrounding environment of the user at the height of
the center of his head. The white region in Figure 4 (b) represents estimated robot’s own
view. Therefore, the robot can understand that it cannot see objects in the black regions such
as behind the panel from its position. The white and gray regions in Figure 4 (c) represent
estimated user’s view. It is required to distinguish the regions in which the user’s view and
robot’s one overlap from the regions in which they do not. Overlapped regions represent the
regions which the robot can visually confirm that they are within the user’s view. Conversely,
the other user’s view represents the regions which may be within the user’s view, but the ro-
bot cannot confirm whether these regions are truly open spaces or not because they are out
of the robot’s view. The white regions in Figure 4 (c) represent the former view, and the gray

regions represent the latter one.

3. SUBJECTIVE IMPRESSION EVALUATION

3.1. Settings

We carry out a subjective evaluation of impressions given by behaviors of the robot which
estimates fields of view and acts with consideration for “difference in perceptions” in human-

robot interactions.

We set three tasks of interactions between a robot and a user. For each task, we set three
conditions A, B and C of the robot’s behaviors. Condition A is “a robot which behaves re-
gardless of the user’s state,” Condition B is “a robot which behaves according to the user’s
state, but does not estimate fields of view (that is, does not understand ‘difference in percep-
tions’)” and Condition C is “a robot which estimates fields of view to understand the ‘differ-

ence in perceptions’ and behave considerate actions toward the user.”

We use “Robovie-R ver.2” manufactured by Vstone Co., Ltd. as a robot in the experi-
ments. We also use the “Bumblebee2” manufactured by Point Grey Research, Inc. as the ste-
reo camera equipped on the robot to capture images. The image size is 320 x 240 pixels. The
frame rate of our system is about 8 [fps] without any special optimization on a normal PC
(Intel Core 2 Duo, 2.60 [GHz]). Details of settings for each task are as follows. Figure 5

shows bird’s eye images and actual snapshots of these tasks.

[Task #1] The robot gives advices at regular intervals to a user who is looking for a stuffed
bear in his blind, and prompts him to find it (Figure 5 (a)). This interaction is the almost

same as that shown in Figure 1 (a).

Condition A: The robot tells the user the direction of the stuffed bear viewed from itself,

regardless of the user’s state. (“It is in front to right.”)

Condition B: The robot tells the user the relative direction of the stuffed bear to the user’s
body. It does not estimate their fields of view. (“It is on the left. (If the user turns left) It is

in front.”)

Condition C: In addition to Condition B, when the stuffed bear is in a blind spot in front
of the user, the robot tells him so and beckons him. (“It is in front. You cannot see it from

your position, so please come here.”)
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Figure 5: Bird’s eye images and snapshots of three tasks.

[Task #2] The robot and the user count cardboard boxes around them in cooperation with

each other. The robot provides information to the user when he asks the robot (Figure 5 (b)).

Condition A: The robot tells the user the number of boxes which it can see, regardless of

the user’s state. (“I can see three boxes in all.”)

Condition B: The robot tells the user the number of boxes which it can see with the
relative direction of them to the user’s body. (“One in front to the right, two in front to the

left, there are three boxes in all.”)

Condition C: The robot tells the user the number of boxes with the relative direction to
the user’s body for boxes which the user can see, and tells him that they are in his blind for
those which he cannot see. (“One in front to the right, two in your blind, there are three

boxes in all.”)

[Task #3] The user turns his body to a stuffed bear in the robot’s blind and instruct the robot
to carry it. The robot reacts to that (Figure 5 (c)). This interaction is the almost same as that

shown in Figure 1 (b).

Condition A: The robot searches the stuffed bear in the input image without gestures,
regardless of the user’s state. After that, it looks to the user and tells him that it could not
find the bear. (“A stuffed bear could not be found anywhere.”)

Condition B: The robot searches the stuffed bear along the frontal direction of the user’s
body while turning its head. After that, it tells the user that it could not find the bear while
pointing the frontal region of his body. (“A stuffed bear could not be found in front of

you.”)



Table 1: Adjective pairs.

Adjective Pairs
kind — unkind agreeable — disagreeable active — passive wise — foolish
pleasant — unpleasant human-like — mechanical cheerful — gloomy violent — mild
interesting — boring enjoyable — unenjoyable pretty — hateful good — bad
safe — dangerous confident — fainthearted warm — cold CompleX - simple
favorite — unfavorite intelligible — unintelligible full — empty bright — dark
friendly — unfriendly  approachable — unapporoachable  quick — sluggish fast — slow
sensitive — Insensitive considerate — selfish showy — plain informal — formal

Condition C: The robot confirms that there is its blind spot on the frontal direction of the
user’s body, and move to the appropriate position where it can see that spot. After moving,
it points out the stuffed bear. (“I cannot see that from here, so I will move there. (After
moving) That stuffed bear, isn’t it?”)

Two kinds of video of the human-robot interaction are made for each task. One is taken by
a fixed camera behind the robot, and another is taken by a camera held by the user who ac-
tually interacts with the robot. Twenty males and females, aged from twenties to fifties, par-
ticipate in the evaluation. Participants watch these videos and subjectively evaluate impres-
sions which they receive from the robot’s behaviors by questionnaires based on the semantic
differential (SD) method [10], which includes 28 adjective pairs. The adjective pairs used
in the experiment are shown in Table 1. Participants are requested to evaluate impressions
concerning each adjective pair in seven grades. Score is higher if the degree of positive adjec-

tive is higher. They are also requested to answer the following two questions in seven grades.
Q1: “Did the robot behave appropriately according to the situation?”
Q2: “Did the robot behave while putting itself in the user’s position?”

The order of presentation of three conditions A, B and C in each task and that of adjective
pairs in the questionnaire are counterbalanced. The arrangement of objects in the experimen-
tal environment of each task (shown in the top row in Figure 5) is explained to the partici-
pants before they watch the videos. Consequently, the participants can know what the user

and the robot can and cannot see when they evaluate the robot’s behaviors.

The factor analysis was applied to the evaluation results for each task independently. Then
five factors for Task #1, five factors for Task #2, and three factors for Task #3 were extracted
respectively. The numbers of factors were determined by the eigenvalues of the correlation

coefficient matrix of the evaluation score for the adjective pairs. Cumulative contributions are

0.672, 0.728 and 0.734 respectively.



3.2. Results

We compare impressions among three conditions in each task based on the factor scores.
The analysis of variance (ANOVA) indicates that there are significant differences in the
scores of several factors. Especially, we focus on the third factor of Task #1, the third factor
of Task #2, and the first factor of Task #3. Table 2 shows loadings of these factors. These fac-
tors have high loadings especially for “considerate” (All tasks), “agreeable” (Task #2, #3),
“approachable” (Task #1, #3) and so on. Consequently, we can interpret them as factors
strongly related to good impressions on the robot, especially “familiarity.” Figure 6 shows the
graph of means of these “familiarity” scores. The multiple comparisons between the scores of
these factors indicates that the score of Condition C is significantly higher than those of other
two conditions in every task. ***, ** and * in Figure 6 represent that there are significant

differences with p < 0.001, 0.01 and 0.05 respectively.

Table 2: Factor loadings.

Adjective Task #1  Task #2 Task #3 | Adjective |Task #1 Task #2  Task #3
kind 0.327 0.303 0.549 active 0.140 0.096 0.831
pleasant 0.340 0.348 0.745 cheerful | 0.130 0.054 0.580
interesting 0.261 0.161 0.832 pretty 0.281 0.311 0.560
safe 0.440 0.257 0.221 warm 0.371 0.403 0.755
favorite 0.375 0.319 0.707 full 0.429 0417 0.848
friendly 0.291 0.450 0.703 quick 0.168 0.113 0.362
sensitive 0.398 0.306 0.606 showy 0.108 0.141 0.736
agreeable 0.459 0.503 0.789 wise 0.733 0.728 0.782
human-like 0.472 0416 0.577 violent -0.048 -0.156  -0.032
enjoyable 0.150 0.200 0.759 good 0.611 0.553 0.803
confident -0.424 -0.138 -0.203 complex | 0.213 0.290 0.783
intelligible 0.780 0.569 0.448 bright 0.155 0.122 0.741
approachable | 0.632 0.286 0.556 fast 0.093 -0.003 0.301
considerate 0.540 0.734 0.792 informal | 0.235 0.299 0.563

Furthermore, ANOVA indicates that there are significant differences in evaluation scores
for Q1 and Q2 in every task. Figure 7 shows the graph of means of the evaluations. The mul-
tiple comparisons between the scores for both of Q1 and Q2 indicates that the score of Con-
dition C is significantly higher than those of other two conditions in every task. *#%, #* and *
in Figure 7 represent that there are significant differences with p < 0.001, 0.01 and 0.05 re-

spectively as well as Figure 6.

These results of the evaluation of impressions show that the robot which estimates fields of

view and behaves with consideration for “difference in perceptions” gives the observer the
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Figure 6: Mean scores for “familiarity.” Figure 7: Mean scores for the questions Q1 and Q2.

“familiar” impressions such as “considerate,” “agreeable,” “approachable” and so on. Fur-
thermore, the results of the two questions Q1 and Q2 show that the participants evaluate the
proposed robot’s behaviors as appropriate to the situation. The results also show that the ro-

bot gives them impressions that it can put itself in the user’s position during the interactions.

4. CONCLUSIONS

In this paper, we carry out experimental subjective evaluations of impressions which the
robot gives to humans during human-robot interactions. We expect that a “considerate” robot
which can guess a user’s perception and understand differences between their recognition of
situations will be friendlier and more pleasant to users. The experimental results show that
such a “considerate” robot can give “familiar” impressions to humans. The contribution of
this paper is to verify our expectation statistically by the experimental evaluation from the

viewpoint of subjective or Kansei impressions.



The robot which can behave while considering difference in perceptions and putting itself
in a user’s position has an imagination to the user’s state and a convideration for the user. The
experimental results in this paper show that humans can feel such imagination and considera-
tion from the robot’s behaviors well and that such abilities contribute toward improving the
robot’s “familiarity.” This fact is expected to be one of fundamental recommendations for de-

signing much friendlier interactions with robots and other intelligent systems.

As a future work, a study which deals with a more complicated “difference in perceptions”
should be addressed. In this paper, we focus on the fields of view, which are relatively easy to
estimate from the images. Hereafter, we will attempt to study detection of differences in more
subjective and Kansei perceptions and to realize a robot which can act more “considerate”
behaviors toward humans based on such information. Furthermore, it is probable that the
appearance of the robot has a great influence on impressions to users. Therefore it is also re-
quired that we carry out subjective impression evaluations using robots of various appear-

ances and analyze the difference in results between them.
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