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ABSTRACT 

The design of autonomous controllers for mobile robotic systems continues to be a 
challenge, due to the complexities and uncertainties of not only the robotic systems but 
also the environment. In this paper, we present preliminary work on the development 
of a KANSEI robot testbed; in particular, a simple neural network controller in 
combination with human reaction monitoring and post processing is developed. 
Currently, computer vision and a joystick are used but additional sensor platforms will 
be developed to capture human reaction in interacting with the robot for a collaborate 
activity. The validity of the approach is tested experimentally on a mobile robot with 
vision capability. Results show that the using human reaction to capture robot images 
provides a feasible architecture for designing mobile robot controllers. 
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1. INTRODUCTION 

I hear and I forget;  I see and I remember;  I do and I understand 

                                      …ancient Chinese proverb 

Research continues to flourish in the development of colonies of miniature robotic 
platforms  that  are  inexpensive  and  yet robust, computationally powerful enough to 
be autonomous while displaying certain desired behaviors [1-7]. To be truly useful, 
comprehensive development tools and robust controller designs must be available for 
robot colonies and, in particular, modules for supporting rapid controller construction 
through evolution in robot simulation [8] and experimentation [9]. Further, to be true 
partners in performing a task, humans working with robots must share common 
preferences, strategies and goals; we believe this can only be accomplished through a 
KANSEI engineering approach. 

In the area of control designs for mobile robotic systems, Boada and others [10] 
developed a method based upon reinforced learning to teach robot simple skills such as 
moving to a goal or contour following. Yibin and others [11] also employed reinforced 
learning and in particular Q-Learning for path following and obstacle avoidance. In 
[12], Kim and others used fuzzy rules and simple cooperative learning methods to 
design controllers for a colony of robots. Further Barate and Manzanera [13] used 
genetic programming to produce a vision-based obstacle avoidance algorithm for 
mobile robots. 

Humans can play a role not only in collaborating with robots but also in teaching 
robots. Several researchers continue to investigate the roles of the human and the 
machine in human-robot interactions. For example in [14], Demiris provides an 
excellent overview of several approaches for generating action recognition and 
predicting intent for human-robot interactions. The approaches are classified as 
descriptive (characterizing patterns under constraints to generate actions) or 
generative (formulating a set of variables to link causes with observed data). Further 
architectures such as HAMMER [14], which generates internal models and uses robot 
learning by imitation, and a pipeline information system, based upon a situation 
awareness model [15], have been developed for intent recognition. An interaction 
debugging tool has been developed which may be used in analyzing the data collected 
in human-robot interactions [16]. 

In this paper, as part of a larger effort to understand the process of how humans can 
teach robots to learn, we focus on a simple method that integrates neural networks and 
reinforced learning through human interaction with the robots. The Center for 
Robotics and Intelligent Machines (CRIM) at North Carolina State University has 



focused on the design of intelligent controllers for mobile robot colonies for many 
years. Further the CRIM has developed an experimental testbed and several 
simulation tools to assist with the development of the control designs as well as with 
the evaluation of these methods. The CRIM approach is a generative one whereby 
genetic algorithms are employed to capture behavior characteristics and supervisory 
evolutionary methods are used to train the robot controllers. Previous controller 
designs have been developed using acoustic analysis [17], rule base controllers and 
evolutionary algorithms [18]. The acoustic analysis controller navigates the robot to 
the goal by triangulating the distance and direction of the sound source using an array 
of microphones. The robot will then navigate to the goal using classical motor control 
algorithms. An evolutionary neural network algorithm was previous implemented to 
successfully navigate the robot to its goal. The evolutionary algorithm used 
reinforcement learning where high-level task performance feedback is applied to the 
evolution of controllers for autonomous mobile robots. Evolutionary controller design 
involves many generations of lengthy training. The purpose of this research is to 
develop a “breeder training” algorithm where a human is used to teach the robot to 
accomplish its goal. This is believed that this approach can produce results similar to 
the evolutionary neural network controller but in a faster time period.  

The CRIM has developed a computationally powerful colony of small mobile robots 
[17-18]. These robots are called EvBots from EVolutionary roBOTs. Each robot is 9 
in. wide by 12 in. long by 8 in. high and is constructed on a two track treaded wheel 
base. Each robot is equipped with a PC/104 based onboard computer with an X86 
software compatible 32-bit CPU core operating at 133 MHz. For communication 
between robots in the colony, each is linked to the Internet via a Linksys Wireless 
Ethernet PC-Card. A custom Linux distribution derived from Debin is used as the 
operating system and is capable of executing high-level programming languages. The 
robots are linked to one another and to the Internet via a Linksys wireless network 
access point that can support up to 21 devices. Each robot also supports video data 
acquisition (up to 640x480 live motion resolution) through a USB video camera 
mounted on each robot. A photograph of the fully assembled EvBot II is shown in 
Figure 1. Using this mobile robot colony, we are able to test several control designs, 
including the approach presented here. 

 



 

Figure 1:  Mobile Robot Platform 

2. THE OVERALL KANSEI ARCHITECTURE 

Recently, several researchers have focused on the application of kansei in robotics. 
For example, Hashimoto [19] suggests a new area in which robots and human can 
interact as partners. In [20], Sato et. al. employ kansei in designing neural network 
controllers for a manipulator arm. For the over-arching architecture for our human-
robot interaction model, we plan to employ the Multi-Agent Mind Model suggested by 
Tauchi et. al. [21].  In Tauchi’s work, the mind of a human can be modeled by multi-
agents: (a) stimulus processing agent (SPA); (b) knowledge processing agent (KPA); 
(c) emotion processing agent (EPA); and (d) response processing agent (RPA).  One 
can associate each agent with classical robot components or software strategies: (a) 
stimulus processing agent – sensor information; (b) knowledge processing agent – 
knowledge databases; (c) emotion processing agent – heuristics; and (d) response 
processing agent – control rules. Each of these agents interacts with and is stimulated 
by the world environment. 

Thus, a robot as an equal partner with a human in a collaborative activity should 
have similar functions as does a human. While one may be a teacher (the human) in 
the beginning of a task scenario, the other (pupil) can gain information and develop 
kansei through working with the human – learn by doing. The architecture we propose 
is based upon the Tauchi model [21] but with a modification as shown in Figure 2. The 
EPA block receives mental images from other robots based upon instincts, including 
human instincts during training, and outputs mental images to the learning mechanism; 
the KPA block receives mental images from its knowledge base built from other robots 
as well as itself from previous tasks and outputs mental images to the learning 
mechanism; and the SPA block receives stimuli from other robots and the environment 
and outputs mental images to the learning mechanism. The learning mechanism takes 
all of the mental images and produces actions – in the future, we plan to investigate the 
use of knowledge amplification [23], amongst several techniques, for the learning. 



 

Figure 2:  System Architecture 

In [22], we focused on the KPA and SPA. In particular, we have developed several 
mobile robots and have investigated robot behavior in a colony. Each robot consists of 
a data structure that stores the robot’s current position, orientation, sensor input 
readings, and actuator output. The overarching approach is an evolutionary one where 
three different controllers were studied (rule-based, random and neural networks). 
Human intervention can be interjected during the training sessions and the simulation 
environment is marked by m by m planar grids in which each grid element is either 
solid or space. We simulated learning cooperatives and then transferred the 
information to the actual experimental testbed; in our tests, we used a tournament 
game playing between two teams of robots.  

Results when playing the game of capturing the flag [8] have been reported 
elsewhere and it was noted that interesting and unexpected scenarios have been 
observed. For example, in some instances, without even teaching the robots, we 
noticed that one group of robots evolved the strategy of dividing up into smaller 
groups whereby one group would try to block the opposing team while the other group 
would try to capture the flag. In this paper, we continue with our efforts by focusing 
on modifying the neural network controller. 

3. DEVELOPING THE NEURAL NETWORK CONTROLLER 

To begin the development of the mental function architecture, we employ an 
artificial neural network as the controller (response processing agent) for the robot. 
This is now discussed. 

3.1. Neural Network Inputs Processing 

The EvBot’s USB camera is used to capture a 640 by 480 pixel image of its 
environment as shown in Figure 3a. A range-finding system was created to identify 
object types in addition to distance. This vision system takes advantage of fixed 
geometric elements with the physical environment to calculate the ranges and angles of 
obstacles and goals. The walls, goals and environment flooring are known fixed colors. 
Using this information, the vision system can distinguish between the following object 
types: obstacles, red goal, environment flooring, and environment walls. For each 



pixel, the Sum of the Squared-Errors (SSE) is computed from known RBG (Red, 
Green, and Blue) values from the four distinct object types using (1). The pixel is 
identified as being part of the object with the lowest SSE. Figure 3b displays the robot 
environment after the object identification process. The goal and wall obstacles are 
visible only after the object identification step. All other objects were converted to 
NULL pixels.  The wall obstacles and goals are of a constant known height. The 
distances can be calculated from an image by determining the relative width of the 
colored bands within the image. The vertical sum of pixels, �p, of each object type is 
calculated and stored in a separate array covering the horizontal spread of the image.  
These numerical arrays are then fed element by element through a simple distance 
formula (2) to produce the final vectors of ranges d for each object type where H is the 
physical height of each object type and K is an empirically derived constant. H and d 
are in length units (inches). The final form of the data is (for each object type) a vector 
of numbers spanning the horizontal spread of the original image, where each number 
represents the distance of the closest object of that type in that direction. If no object is 
detected, the maximum sensor range is returned.  

 

Both range and angles of detectable objects are reported over a spread of 48 degrees 
centered on the forward direction of the robot frame reference. From the 640 by 480 
pixel images, a vector of 480 range values is produced for wall obstacles and goal 
objects shown in Figure 3c.  In this figure, the black lines represent the wall ranges 
and the red lines represent the gold ranges.  The controllers are only provided   with   
the   resulting   numerical data vectors. All distances, angles, and object types must be 
learned by the neural networks. Object data vectors are always presented to the 
networks in the same order so a particular scalar input resulting from the distance of 
an object type in a particular direction will always be presented to the same input. 
Using all 480 elements from both the obstacle and goal object as inputs into the neural 
network would produce large size networks with very long training times. To reduce 
the size of the networks, the inputs were sampled so that 32 elements from both object 
types were used to reduce the number of inputs to 64 shown in Figure 3d.  

3.2. Human Reaction Monitoring 

A server/client interface, shown in Figure 5, has been developed to maneuver the 
Evbot II remotely. This software makes use of TCP sockets and the 802.11 wireless 
interfaces to synchronize captured images and motor commands between the mobile 
robot and the Mobile Robot Network Manager Client. The client makes use of 
Microsoft Direct X libraries to capture the input from the game controller’s devices. In 



this research, an aviator style joystick with optional force feedback was used to 
wirelessly maneuver the robot.  

The client establishes a connection with the server running onboard the EvBot II 
and continually requests images. A 24 bit RGB raw frame is captured from the USB 
webcam and compressed using jpeg standards. The image is compressed to minimize 
data transfer. It was experimentally determined that the compression is needed to 
successfully synchronize the image at 1 to 2 frames per second depending on client 
processing speed and network limitations. After the synchronization, the range finding 
emulation system is used to produce the neural network inputs. It was determined that 
the compression had very little impact on the calculation of the goal and obstacle 
ranges.  

The joystick magnitude and direction is captured and decoded to the robot motor 
commands. A slight backward joystick movement will slowly reverse the robot while a 
forceful forward joystick movement will result in forward robot behavior. The motor 
command is sent to the robot for execution and contains the following elements: 
m1pwm, m2pwm, m1dir, m2dir, where m1pwm is the pulse width modulation (pwm) 
value for motor 1, and m1dir is the corresponding direction in which the motor should 
turn. The user indicates that the robot is at the goal by pressing any button on the 
joystick. The motor pwm and direction values are stored along with the corresponding 
goal and obstacle ranges in a spreadsheet. The client exports the spreadsheet using the 
csv (comma-separated values) format so it can be easily imported to data mining 
software such as the Matlab Neural Network Toolbox, The University of Waikato 
WEKA, or the authors’ back-propagation neural network library. 
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(b)  Processed Image 
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Figure 3:  Neural Network Preprocessing 

3.3. The Neural Network Architecture 

For completeness sake and to introduce the notation used in this paper, a brief 
summary of the artificial neural network (ANN) architecture is presented. In the work 
presented here, it was sufficient to use back-propagation, although more sophisticated 
methods may be employed if necessary.  

At each layer, the output of a unit j is calculated as: 

 

where Oi and Oj are the output of nodes i and j, wij is the connection strength from 
node i to node j, and !j, is the internal threshold of node j. The function f(x) is the 

neuron evaluation function selected as a sigmoid function here. A linear function then 
transforms the input value into continuous ranges of value.  

In the back-propagation phase, the weights and the internal thresholds are modified 
using the errors between the desired and actual outputs. More specifically, they are 
adjusted by the following equations: 



 

where " is a small positive constant called the learning rate, #i is the error signal at 

node j, and $ is the momentum coefficient that determines the effect of past learning 

on the current weight changes. If node j is at the output layer, the error signal #j is 

calculated as: 

 

where Od
j is the desired output for node j. If node j is at any of the hidden layers, the 

error signal is calculated as: 

 

The feedforward phase and the back-propagation phase are repeated until the errors 
are below some desired threshold. One may also employ a generalized adaptive neural 
fuzzy inference system (GANFIS) which combines ANNs and fuzzy inference [24] 
for control. 

3.4. Input/Output Mapping 

Due to the unclear relationship between actuator signals and goal and obstacle 
range, developing a rule base controller may become complex. A machine learning 
algorithm is applied to reduce the complexity and to automatically map relationships 
between inputs and outputs. In many cases, the actuator signals that will result in a 
good expression of a complex behavior are generally not known. Hence, it is not 
possible to explicitly formulate an error back-propagation training scheme to train 
controller structures.  In this particular case, an expert controller (human) performs 
the complex behavior using the joystick for the robot to reach its goal. Future research 
will add other stimulus processing agents as well as heuristics. 

The training set is created by randomly initializing the robot location and orientation 
in its environment. The human operator then navigates the robot to its goal. This 
procedure is repeated to create a training set of 117 samples.  A neural network 
architecture is used on the training samples to determine the weight values to produce 
the desired motor commands. In this architecture, all of the neurons are connected to 
each other in a brute force fashion with a variable number of hidden neurons and a 
variable number of output neurons and types. The initial weights in the network were 
initialized to a random small number and the inputs were normalized to prevent the 
network from saturation during training. The inputs were normalized by dividing all 



input values by the maximum sensor range value.  Eleven training runs were 
performed to produce the desired input/output mapping. Table 1  displays  the results  
of  the effects of varying neuron types and number of hidden neurons on the 
input/output mapping. The multi-output training took approximately 24 to 72 hours to 
propagate through 100,000 epochs, while the single output architecture reaches its 
training goal in 5 to 7 hours. 

The results of the training reveal the complexity of mapping all five outputs at once. 
The single output architecture produced a much lower SSE than the multi-output 
architecture, regardless of the number of hidden neurons and type of output neurons. 
The linear output neurons also seem to produce slightly better mapping than neurons 
using the sigmoid function. 

3.5. Post Processing 

Post processing of the network outputs is kept to a minimum. The outputs are 
rounded to the nearest integer and the thresholds kept at minimum and maximum 
values to meet the motor control specifications. Post processing affects the network 
SSE using the training samples. A summary of these results are shown in Table 2. For 
the sigmoid and multi-output networks, the post processing may hinder performance; 
but for single linear output networks, performance is enhanced. 

4. EXPERIMENTAL RESULTS 

An “Autodrive” program was implemented onboard the mobile robot. This software 
recreates the neural network using weights from the training samples. This software 
interacts with the range-finding system to locally detect wall and goal ranges.  The 
system then sends the ranges through the neural network to predict the desired motor 
command. This command is sent directly to the motor to navigate the robot. This 
process is repeated until the neural network output predicts a goal. Figure 4 displays 
the robot behavior using the “Autodrive” algorithm. In this experiment, the robot was 
initialized at a position where the goal was slightly visible; then the robot successfully 
navigated to its goal. Figure 5 shows the Network Management Client User Interface 
for the experiments. In other experiments, the robot behaves in the similar manner if 
the goal was initially visible. 



 

Figure 4:  Path Tracking View from Overhead Camera 

 

 
  

Figure 5:  Mobile Robot Network Manager Client User Interface 

5. CONCLUSIONS 

In this paper we present a different approach to vision-guided mobile robot 
navigation. Instead of using a rule-based controller, a neural network controller was 
trained, mapping a human-operated joystick command to capture robot images. Using 
a back-propagation gradient descent training algorithm, a controller was developed to 
successfully navigate the robot to its goal. Results show that this simple yet effective 
approach produces reasonable performance. Future research involves characterization 
of the newly designed controller to the rule base controllers and evolutionary 
algorithm controllers previously designed as well as the development of additional 
sensors for both human and robot in order to capture how the mental functions of 
humans operate in a goal-oriented scenarios which can then be transferred to mobile 
robots leading to enhanced human-robot interaction. 

Further, one approach that may be employed to generate learning is the use of a 
KASER [23] which has shown promise as a heuristics-based architecture, using 
randomization and symmetry for learning. This architecture also allows the building of 
a knowledgebase (KPA) and possibly feedback to the EPA as more experience is 



gained (more robot runs are performed). These tools can be integrated into the testbed 
to improve the transference of intelligence between human and robot. 
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Table 1:  Network Training 

Net Hidden Neurons Hidden Neuron 
Type 

Outputs Output Neuron 
Type 

SSE Epochs 

1 32 Sigmoid All Sigmoid 341.414 100000 

2 10 Sigmoid All Sigmoid 191.404 100000 

3 128 Sigmoid All Sigmoid 215.305 100000 

4 256 Sigmoid All Linear 10021.6 100000 

5 256 Sigmoid m1pwm Linear 0.00590 100000 

6 256 Sigmoid m2pwm Linear 0.00600 15159 

7 128 Sigmoid m1dir Linear 0.17625 100000 

8 64 Sigmoid m2dir Sigmoid 4.97000 24639 

9 128 Sigmoid m2dir Linear 0.00267 400376 

10 32 Sigmoid Goal Sigmoid 0.90518 100000 

11 64 Sigmoid Goal Linear 0.82893 100000 

 

Table 2: Post Processing Effect on Error  

Network SSE POST PROCESSED SSE 

1 341.4136 349.0000 

2 191.4040 214.5000 

3 215.3054 216.5000 

4 10021.5660 10123.0000 

5 0.00590 0.0000 

6 0.00600 0.0000 

7 0.17625 0.0000 

8 4.97000 6.0000 

9 0.00267 0.0000 

10 0.90518 1.0000 

11 0.82893 1.0000 

 


