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ABSTRACT

This paper investigates the relations between music contents and other non-verbal ways of ex-
pression. In particular, the idea that music is, among other things, a performing art and it is
composed by what we commonly call musical gestures, suggested us to study if and how some
aspects of music expression can be associated with the properties of a physical gesture. An experi-
ment was carried out in order to verify whether subjects are able to associate musical excerpts with
physical properties, such as elasticity, inertia, and friction, represented by means of a set of com-
puter generated haptic stimuli. The comparison with a previous study on the affective response to
the same set of excerpts allows us to point out relations among the physical, the musical, and the
affective domains.

Keywords: Expressive information processing, Musical and physical gestures, Audio analysis,
Perceptual analysis.

1. INTRODUCTION

Nowadays, the study of music is not limited to the artistic field. Indeed, the power of music
to arouse in the listener a rich set of sensations, such as images, feelings, or emotions, can have
many applications. In the information technology field, a musical signal can contribute to the mul-
timodal/multisensory interaction, communicating events and processes, providing the user with
information through sonification, or giving auditory warnings. In this sense, sound design requires
great attention and a deep understanding of the influence of musical parameters on the user’s ex-
perience. The relation between music and emotions has been largely investigated by the scientific
community (see [1] for a review). Recently, Bigand [2] investigates the emotion conveyed by mu-
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sical pieces, carrying out some experiments in which the participants were encouraged to focus
on their own emotional experience. Musically trained and untrained listeners were asked to lis-
ten to 27 different musical excerpts and to group those that conveyed similar subjective emotions.
By means of the multidimensional scaling method (MDS), a two-dimensional space was found
to provide a good fit of the data, with arousal and emotional valence as the primary dimensions
(Fig. 1). In particular, the excerpts resulted grouped in four clusters, hereafter named affective
clusters, characterized by i) high arousal and high valence (HAHV), ii) low arousal and high va-
lence (LAHV), iii) high arousal and low valence (HALV) and iv) low arousal and low valence
(LALV). However, music experience is evidently not limited to the emotions. Music experience is
a very complex issue, that can be described in manifold ways. Often, musicians and listeners talk
about music using terms borrowed from different sensorial modalities: e.g., a music piece can be
described by words belonging to the tactile domain, such as hard, or to the visual domain, such as
bright. Canazza et al. [3] investigated the relations between musical parameters and sensorial ad-
jectives by means of some perceptual experiments. Camurri et al. [4] defined a multi-layer model
to represent common characteristics of different sensorial domains, such as sounds and physical
gestures.

We move from the assumption that the numerous ways to describe the characteristics of a music
piece are not mutually exclusive, but rather complementary points of view of the same complex
experience. Each description is a metaphor that allows to represent particular aspects of the mu-
sical experience, without totally representing that experience. This paper aims at investigating the
relations between music contents and non verbal ways of expression. In particular, the idea that
music is, among other things, a performing art and it is composed by what we commonly call
musical gestures, suggest us to study if and how some aspects of music expression can be asso-
ciated with physical properties, such as elasticity, inertia, and friction. In a previous work [5] the
present authors carried out an experiment using a set of simple monophonic musical excerpts and
three computer generated haptic stimuli (see Sec. 2.1), called attractors, simulating three different
physical properties. The theme from Händel’s Sonata HWV 379 in E Minor Op. 1 No. 1 (Adagio)
and the traditional song Twinkle Twinkle Little Star were played by a solo instrument (violin, flute,
and guitar) several times in order to convey expressive intentions Happy, Sad, Angry and Calm
(affective metaphor), Light, Heavy, Soft, and Hard (sensorial metaphor). Participants were asked
to listen to each musical excerpt and to associate them with one of the three attractors. The results
showed that subjects are able to consistently associate musical excerpts with the haptic stimuli. In
order to verify if this result can be generalized to complex polyphonic musical pieces, we carried
out an experiment (see Sec. 2) with the same 27 musical stimuli used by Bigand [2]. Participants
were asked to listen to each musical excerpt and to associate it with one of three computer gener-
ated haptic stimuli (see Sec. 2.1). The statistical analysis of the responses (see Sec. 2.2), showed
that the listeners organized the musical stimuli in five clusters, later on named haptic clusters, each
one associated with one or a combination of the three attractors. In addiction, in order to investi-
gate the nature of these associations (both the four affective clusters and the five haptic clusters),
we carried out a detailed acoustic analysis of the musical stimuli (see Sec. 3). This analysis al-
lowed us to relate the subjects’ answers with the music features and to identify relations among
the physical, the musical, and the affective domains.



Figure 1: The 27 excerpts of the experiment in Bigand [2], mapped on a two-dimensional space.
Dashed lines represent the four affective clusters: high arousal and high valence (HAHV); high
arousal and low valence (HALV); low arousal and high valence (LAHV); low arousal and low
valence (LALV). Figure adapted from [2].

2. PERCEPTUAL EXPERIMENT

We carried out a perceptual experiment to verify if some aspects of the musical expression can
be associated with basic physical properties, such as elasticity, inertia, and friction. Participants
were asked to listen a set of musical excerpts and to associate them with one of three haptic stimuli.

2.1. Materials and apparatus

A set of musical excerpts and a set of haptic stimuli, called attractors, were used in the exper-
imental setup. The musical excerpts are the same used in Bigand [2]: 27 musical stimuli with a
polyphonic structure selected from recordings of the Western music repertoire, from XVII to XX
century. The set of attractors is composed by three haptic stimuli generated by means of a Phan-
tom Omni1, a haptic device with six degrees of freedom, controlled in order to simulate the basic
effect of a mechanical system composed by mass, spring, and damper: (i) an elastic force, with
elastic constant Kel (Elasticity - E); (ii) a viscous damper, with damping coefficient µV (Friction
- F); (iii) an inertial mass m (Inertia - I).

The excerpts were represented on a computer screen by means a visual interface implemented
using the real-time sound synthesis program PD (Pure Data)2. The interface consists on three
buttons displayed on the top of the screen, associated with the three attractors, and on a set of
buttons listed in column associated with the 27 musical excerpts, which are presented (in random
order) to the participants. Participants were allowed to listen to the excerpts and to try the attractors
as many time as they wished just by pressing the corresponding button. Each excerpt was also
associated with a radio button where the participants could only select one choice (a, b, or c)

1http://www.sensable.com/haptic-phantom-omni.htm
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employing a three-alternative forced-choice (3AFC) method. A total of 21 subjects participated to
the experiment (7 male, 14 female). Of these, 3 subjects had a professional musical training for
5 years at least; 7 subjects played an instrument; 11 subjects did not have any musical training.
Participants were of Italian nationality and were aged from 22 to 53 years (30 years average). The
duration of the test was about 20 minutes.

2.2. Results

Tab. 1 shows the contingency table of the subjects’ responses with rows representing the 27
musical excerpts and columns representing the 3 haptic attractors. The Pearson’s Chi-squared
test denoted a strong relation between musical excerpts and attractors (χ2 = 205.2, df = 52,
p < 0.001) and confirmed that subjects are able to distinguish the different haptic attractors and to
use them to classify the musical excerpts. In order to verify if the haptic stimuli can be related to
the affective clusters, a new contingency table with 4 rows was obtained by grouping the musical
excerpts following the composition of the affective clusters (reported in the first column of the
Tab. 1). A χ2 = 135.0 (df = 6, p < 0.001) confirmed that subjects recognized a relation among
clusters and attractors. In particular, significative relation was found between the HAHV cluster
and the Elasticity attractor (χ2 = 35.9, df = 1, p < 0.001), between the LALV cluster and the
Inertia attractor (χ2 = 56.2, df = 1, p < 0.001), and between the LAHV cluster and the Inertia
attractor (χ2 = 29.9, df = 1, p < 0.001). On the contrary, no statistically significative relation
has been found with the Friction attractor. The contingency table was submitted to Simple Cor-
respondence Analysis in order to graphically represent the degree of association between musical
stimuli and attractors. Finally, we carried out a k-means analysis in order to identify clusters of
stimuli. The results are mapped in Fig. 2 and show that the stimuli can be grouped in five clusters.
Three of them include one of the attractor and in the next we will refer to these cluster with the
name of the attractor: cluster Inertia (I), cluster Elasticity (E), and cluster Friction (F). The others
are in the middle between two attractors, so they have been named the cluster Inertia-Friction (IF)
and the cluster Elasticity-Friction (EF).

The comparison between the Figs. 1 and 2 shows that the same 27 stimuli have been organized
differently in the two experiments (the affective and the haptic one). Although some relations can
be found among the affective and the haptic clusters (e.g., all the excerpts of the cluster LALV
are mapped inside the cluster I, all the excerpts of the cluster E are mapped inside the clusters
HAHV and HALV), many differences can be identified in the two placements. To explain these
differences, we hypothesized that the two experimental setups induce the listeners to classify the
excerpts on the base of different musical features: in the Bigand’s experiment the listeners were
asked to focus on their own affective response so that would be reasonable to hypothesize that
they paid more attention to the musical features related to the affective domain; differently, in our
experiment the subjects were asked to pay attention on the haptic response, so they may have been
focused on different features. In order to verify this hypothesis we carried out an acoustic analysis
of all 27 excerpts, as reported in the following section.



Table 1: Contingency table of the subjects’ responses.

Cluster Excerpt Friction Elasticity Inertia
HALV B12 7 13 1

B16 9 8 4
B17 4 15 2
B18 9 8 4
B25 9 5 7
B26 12 5 4
B27 5 8 8

HAHV B10 9 9 3
B11 12 3 6
B13 9 12 0
B14 7 12 2
B15 6 14 1
B22 7 11 3
B23 7 11 3
B24 6 13 2

LALV B3 3 3 15
B7 3 3 15
B8 3 2 16
B9 3 5 13

LAHV B1 3 3 15
B2 8 8 5
B4 9 1 11
B5 8 1 12
B6 4 1 16
B19 10 4 7
B20 9 3 9
B21 7 3 11

3. ACOUSTIC ANALYSIS

3.1. Feature extraction

In order to relate the subjects’ answers with the musical features, we carried out a detailed
acoustic analysis of the musical stimuli. A set of acoustic features were calculated for each excerpt.
The set was chosen among those features that in previous listening experiments [6] were found to
be important for discriminating different emotions and were also used to classify the style [7]
and the expressive content in musical performances [8] and [9]. We computed the features using
non-overlapping frames (of 46-ms length), and then we considered their mean value within sliding
windows (with 4-s duration and 3.5-s overlap). The window size allows to include a reasonable
number of events, and it roughly corresponds to the size of the echoic memory. In total, we
collected a set of 13 audio features on about 1700 different windows. See Tab. 2 for a formal
description of the features. The features are: a) Zerocross consists in counting the number of times
the audio signal changes sign. It can be considered as a simple indicator of noisiness; b) RMS
takes into account the global energy of the signal, computed as the root average of the square
of the amplitude (root-mean-square); c) Centroid is the first moment of the spectral amplitude.
It is related with the impression of ‘brightness” of a sound [10], because a high centroid value
means that the sound energy is concentrated at the higher frequencies; d) Brightness measures the
amount of energy above the frequency of 1000 Hz. The result is expressed as a number between 0
and 1; e) Spectral ratios (SRs) over different frequency bands of of the spectrum are other useful
indications of the spectrum shape. The spectrum is divided in three regions: below 534 Hz (SRl),
from 534 to 1805 Hz (SRm), and above 1805 Hz (SRh); f) Rolloff is the frequency such that
the 85% of the total energy is contained below that frequency. It is related to the ”brightness”
of the sound; g) Roughness is calculated starting from the results of Plomp and Levelt [11], that
proposed an estimation of the dissonance degree between two sinusoids, depending on the ratio of



Figure 2: Correspondence analysis on experiment data. Dashed lines represent the outcome of the
cluster analysis.

their frequency. The total roughness for a complex sound can be calculated by computing the peaks
of the spectrum, and taking the average of all the dissonance between all possible pairs of peaks
[12]; h) Spectralflux is the distance between the spectrum of each successive frame; i) Lowenergy
is the percentage of frames showing less-than-average energy. It is an assessment of the temporal
distribution of energy, in order to see if it remains constant throughout the signal, or if some frames
are more contrastive than others; l) Tempo is the musical velocity of the performance. Since many
of the 27 excerpts have a complex polyphonic structure, it is not easy to have a good estimation of
this feature using an automatic routine. Then, the Tempo of each excerpt was estimated by means
of the manual annotations of an expert; m) Modality is a basic aspect of the musical structure. In
Western tonal music there are two modes, named major and minor mode. Also in this case, we
used the annotations of an expert who analysed the musical sheets.

Starting from the calculated features, we selected the set of features related both to the affective
and the haptic clusters. The feature selection procedure consists in finding the audio features that
give the highest classification ratings. A wrapper approach based on sequential feature selection
(SFS) [13] is applied with reference to a linear classifier. The feature selection procedure was
applied twice. On the first time we selected the set of features that classify the 27 excerpts, with a
minimum error rate, following the classes specified by the four affective clusters. The SFS process
selected the following four features, in order of selection: Tempo, Modality, Centroid, and
RMS. The minimum error rate is 18%. Then, we selected the set of features that classify, with
a minimum error rate, the 27 excerpts following the classes specified by the five haptic clusters.
The SFS process selected the following three features, in order of selection: Tempo, Rolloff ,
Zerocross. The minimum error rate is 35%.

3.2. Results

Tab. 3 shows the mean values of the four features selected for the affective clusters, calculated
for each excerpt. The excerpts belonging to the clusters with high arousal (i.e. HAHV and HALV)
are characterized, with a few exceptions, by a high value of Tempo. In particular, the mean value



Table 2: List of the acoustic features. The signal x is blocked in M frames of N samples. Let be
x(f, n) the signal amplitude of the sample n at the frame f ; X(f, k) the spectrum magnitude of
the bin k at the frame f and F (f, k) the center frequency of that bin; kft the bin corresponding
to the frequency ft; I{A} the indicator function equal to 1 if A is true and 0 otherwise; sign(x)
a function equal to 1 if x ≥ 1 and 0 otherwise; rms(x(f)) the RMS value over the frame f and
rms(x) the RMS value over the entire signal x.

RMS
√

1
n

∑N
n=1 x(f, n)2, f = 1, ...,M

Zerocross
∑N−1

n=1 I {sign(x(f, n)) 6= sign(x(f, n+ 1))}, f = 1, ...,M

Centroid
∑N

k=1
F (f,k)X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

Brightness

∑N

k=k1000+1
X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

SRl
∑k534

k=1
X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

SRm

∑k1805
k=k534+1

X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

SRh

∑N

k=k1805+1
X(f,k)∑N

k=1
X(f,k)

, f = 1, ...,M

Rolloff f(k85), where k85 = min(k0) :
∑k0

k=1
X(f,k)∑N

k=1
X(f,k)

> 0.85, f = 1, ...,M

Spectralflux
√∑N

k=1 [X(f + 1, k)−X(f, k)]2, f = 1, ...,M − 1

Lowenergy
∑M

f=1
I{rms(x(f))<rms(x)}

M

among the excerpts of HALV is 127bpm, HAHV is 100bpm, LAHV is 63bpm, and LALV is
47bpm (F = 11.2 on 3 and 23 df , p < 0.001), where bpm stands for beats-per-minute. The
excerpts belonging to the clusters with low valence (i.e. HALV and LALV) are characterized by
a minor modality; all excerpts except number 25 and 26 that are atonal pieces. On the contrary,
all the excerpts but one of the HAHV cluster have a major mode and the excerpt 24, taken from
a Stravinsky’s composition, has an uncertain tonality based on two superposed major chords. The
excerpts of the LAHV cluster are mostly characterized by a major mode. A Chi-squared analysis
showed that modality is significatively related with the valence factor (χ2 = 14.9, df = 2, p <
0.001 ). In regard to the other two selected features, a high Centroid value characterizes the
clusters with high valence (the average value is 1588Hz for HAHV, 1573Hz for LAHV, 1426Hz
for HALV, and 1348Hz for LALV), whereas a high RMS value distinguishes the clusters with
high arousal from the others (the average value is 0.094 for HAHV, 0.080 for LAHV, 0.098 for
HALV, and 0.057 forLV LH). However, for both these features, the differences are not statistically
significative (F < 0.9 on 3 and 23 df , p > 0.05).

The Tab. 4 shows, for each excerpt, the mean values of the selected features. Tempo is, also in
this case, the first selected feature. On average, the cluster I is characterized by a value of 50bpm,
cluster E by a value of 113bpm, cluster F by 80bpm, cluster EF by 115bpm, and cluster IF by
85bpm (F = 4.7 on 4 and 22 df , p < 0.01). In regard to the Rolloff feature, the mean value
over the cluster I is 1902Hz, the cluster E is 2024Hz, the cluster F is 3730Hz, the cluster IF is
1954Hz, and the cluster EF is 3015Hz (F = 4.4 on 4 and 22 df , p < 0.01). Finally, the mean
values of Zerocross are 571 for cluster I, 734 for cluster E, 1136 for cluster F, 815 for cluster IF,
and 838 for cluster EF (F = 3.3 on 4 and 22 df , p < 0.05).



Table 3: Acoustic features related to the affective clusters.
cluster excerpt Tempo [bpm] Modality Centroid [Hz] RMS
HAHV 10 109 major 1643 0.075

11 53 major 2684 0.091
13 103 major 1737 0.080
14 102 major 1141 0.151
15 145 major 1473 0.067
22 103 major 1376 0.060
23 59 major 1047 0.053
24 123 undetermined 1603 0.174

LAHV 1 61 major 1694 0.086
2 77 minor 2322 0.067
4 53 major 1288 0.089
5 53 major 1075 0.108
6 50 major 1078 0.086

19 65 minor 2091 0.105
20 65 minor 1345 0.051
21 76 major 1691 0.045

HALV 12 157 minor 1097 0.061
16 142 minor 1074 0.220
17 149 minor 1844 0.045
18 144 minor 1760 0.174
25 151 undetermined 1725 0.056
26 88 undetermined 1487 0.054
27 58 minor 997 0.079

LALV 3 40 minor 1106 0.018
7 48 minor 1034 0.088
8 50 minor 1615 0.073
9 51 minor 1634 0.048

The Tab. 5 qualitatively summarizes the relations among the haptic clusters and the selected
features. The cluster I is characterized by a low value in all the features, the cluster E by a high
Tempo, and the cluster F by a high value of Rolloff and Zerocross. In regard to the clusters
IF and EF, they seem to have characteristics that are intermediate between two other clusters. In
particular, IF is characterized by low Tempo and Rolloff , as cluster I, and high Zerocross as
cluster F; EF is characterized by high Tempo as cluster E, and high Rolloff and Zerocross as
cluster F.

4. CONCLUSIONS

An experiment was carried out to verify if it is possible to identify relations between physical
and musical domain. The results confirm that subjects are able to associate haptic stimuli simulat-
ing some basic physical properties with polyphonic musical stimuli in a consistent way. The nature
of that association has been investigated by means of an in-depth acoustic analysis, that revealed
a significative correlation between some musical/acoustic features and the subject’s responses:
Tempo, Rolloff (a feature related to the brightness of the sound), and Zerocross (related to
the noisiness of the sound) are the parameters selected to be the most representative of the haptic
clusters. The analysis of the acoustic features related to the affective clusters confirms the results
of previous researches [14], i.e. the main parameters that characterize the affective responses to
music are Tempo and Modality. In regard to relations between haptic and affective metaphors,
significative relations were found between the Elasticity and Inertia clusters and the arousal
dimension. The differences between the haptic and the affective clusters support the idea that the
musical experience can be represented by means of several different metaphors, each one focused
on different aspects of that experience. Indeed, different experimental setups induced the listeners
to classify the excerpts on the base of different musical features: in the Bigand’s experiment the



Table 4: Acoustic features related to the haptic clusters.

cluster excerpt Tempo [bpm] Rolloff [Hz] Zerocross
I 1 61 2313 532

3 40 1366 499
6 50 1014 460
7 48 1415 521
8 50 2560 629
9 51 2747 785

E 12 157 1906 602
14 102 1794 656
15 145 2436 832
17 149 3281 959
22 103 1477 747
23 59 1309 690
24 123 2282 883
27 58 1707 505

F 11 53 5037 1663
19 65 3659 937
26 88 2494 807

IF 4 53 1740 956
5 53 1157 389

20 65 1474 640
21 76 2531 879
25 151 2870 1212

EF 2 77 4066 920
10 109 2921 889
13 103 3082 947
16 142 1759 565
18 144 3246 871

Table 5: Relation among the haptic clusters and the selected features.

Cluster Tempo Rolloff Zerocross
I – - –

E ++ - -

F - ++ ++

IF - - +

EF ++ + +

listeners were asked to focus on their own affective response so they paid more attention to those
musical features related to the affective domain (Tempo and Modality); differently, in our exper-
iment the subjects were asked to pay attention on the haptic responses, so they have been focused,
beside Tempo, on features such as Rolloff and Zerocross, related to timbric aspects.

4.1. Application scenario

Technology-mediated music access and fruition is more and more becoming an interactive pro-
cess. Users need interactive tools for managing and browsing a huge amount of music files. More-
over, games like SingstarTM , UltrastarTM , Guitar-HeroTM (and its open source version Frets on
fireTM or its piano version SynthesiaTM ) and Rock BandTM allow the users to actively participate
in the music production process by playing simplified models of musical instruments or moving
their hand over an invisible guitar. Almost all new mobile devices (phones, media players) and
video-game consoles implement interfaces for music content access and fruition. While a tradi-
tional monitor and mouse interface allows a linguistic based interaction, the reduced dimension of
the mobile devices requires novel strategies: touch sensitive screens, position and movement sen-
sors allow non-linguistic communication and action-based interaction modalities. Unfortunately,
these systems support only limited interaction schemes: e.g., in the musical games the users is
only required to press buttons or perform movements on the right time and no effective relation is
defined between the gesture properties and the musical features. Although our work is at a basic



research level, we believe that a deeper understanding of the relations among musical and physical
stimuli may improve the design of multisensorial interfaces, towards an effective mediation tech-
nology for music content access and fruition, capable of sensing and responding appropriately to
the users actions.
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