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ABSTRACT

In this study, we extract the pitch transition patterns from both traditional Japanese and Chinese
folk songs and examine the characteristics of their respective schemas. Specifically, we sam-
ple 1,794 works from Nihon Min-yo Taikan (Anthology of Japanese Folk Songs, 1944-1993) for
Japanese folk songs and 2,040 folk songs from a website providing virtual musical scores for Chi-
nese folk songs, and probabilistically create a tree structure in modeling a variable-length Markov
chain to compare minimum transition patterns occurring with high probabilities in terms of pitch
intervals. A variable-length Markov chain, also known as a FSMX model or a finite-memory
source, is a Markovian process having a sparse memory structure with states that closely cohere.
The structure can be characterized by a parsimonious number of transition probabilities for sta-
tionary categorical time series. The results indicate that (1) the minimal structures of Japanese
folk songs tend to create a longer schema than Chinese folk songs, and vertical transitions are
sung within a small range; to be exact, below intervals within a perfect fourth pitch. On the other
hand, the minimal structures of Chinese folk songs tend to create a shorter schema than Japanese
folk songs, and their vertical transitions extend beyond the interval of a perfect fourth pitch, and
(2) the formations of perfect fourth pitches and perfect octave characterize the respective musical
schema.
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1. INTRODUCTION

1.1. Purpose of This Study

Aspects of musical structure, such as meter, phrase structure, contrapuntal structure, pitch
spelling, harmony, and key, are well known and understood by many music students, and, thus, are
frequently taken for granted as musical facts. However, one question that has yet to be answered
is what process underlies the inference of such structures [1]. Existing studies, such as Meyer [2]
and Lerdahl and Jackendoff [3] to mention just a couple, have been mainly concerned with the art
music of the common practice periods (identified as Baroque, Classical and Romantic in Western
Europe). We believe that the fundamental reason for that focus is the consequence of the musical
score and notation, which rests on the following two points. First, the vast size of the musical
corpus that is available, having been accumulated over several hundreds of years, allows for large-
scale analysis. Second, systemized composition theories, based on the musical score, have offered
great promise for the extraction of sophisticated structures. Thus, in both a quantitative as well as a
qualitative sense, there is no doubt that Western art music based on musical notation is convenient
and suitable for computational analysis.

However, there is also an undeniable sense that many aspects of musical structure may play
important roles in non-Western music as well. In particular, the characteristics of melodies in
Japanese folk songs, which were created by anonymous nonprofessional musicians and orally
transmitted down, represents a tonal system that has been derived from and formed by antiphonal
singing within a primitive society. Therefore, there is far more chance of extracting musical pat-
terns of primitive conditions from Japanese folk songs than from Western art music. There have
been many case studies about Japanese folk songs from a musicological point of view, such as
the tetrachord theory [4], but those studies were conducted with a small amount of data, and have
rarely been reaffirmed by objective analyses utilizing large amounts of data for computational
analysis.

The goal of this study is to extract the pitch transition patterns from both traditional Japanese and
Chinese folk songs and to examine the characteristics of their respective structures. This kind of
structure is generally called a schema in psychology. The reason why we have chosen Chinese folk
songs as a target for comparison to Japanese folk songs is that despite the considerable influence
of Chinese culture on Japan (a brief history of that influence is described in the next section), the
musical characteristics of both countries differ in many aspects.

The analysis method used to achieve the present study ’s goals employs a musical corpus that
is almost 25 times larger than the probabilistic approach used by Kawase and Tokosumi [5].

1.2. Brief History of Japanese and Chinese Musical Scales

During the Zhou Dynasty from 1122 to 256 BC, Chinese musicians divided the octave into
twelve pitches that were roughly equivalent to the twelve-tone equal temperament of modern
Western music. For a long time within Western music theory, the twelve perfect fifths and seven
octaves have been regarded and treated as being the same interval. By skipping a circle of perfect
fifths, one can eventually reach a pitch that is approximately seven whole octaves above one ’s



starting pitch. The degree of discrepancy is well known as the Pythagorean comma. According
to Huainanzi, Chinese mathematicians were aware of the Pythagorean comma as early as 122
BC. With such materials, Chinese musicians constructed a scale of seven pitches and provided a
twelve-tone chromatic scale.

In the Heian period from 794 to 1185, various forms of music and musical instruments were
introduced to Japan, together with Buddhism and Confucianism, and foreign cultures began to
develop. However, after 1639 when the feudal government of the time entered an era of isolation
by breaking off relations with foreign countries and prohibited foreign travel, Japan musicians
revised and established their own musical schema differing from the Chinese one.

2. OVERVIEW OF THE DATA

We sampled the five largest song genres within the music corpora included in the Nihon Min-
yo Taikan (Anthology of Japanese Folk Songs, 1944-1993) for Japanese folk songs, and three
song genres included in The Essen Folksong Collection from KernScores [6], a website providing
virtual musical scores, for Chinese folk songs. In total, there were 202,246 tones in the sample
of 1,794 Japanese folk song pieces, and 124,677 tones in the sample of 2,040 Chinese folk song
pieces.

While the Chinese folk songs were copied down with absolute pitch (Figure 1), the scores for
the Japanese folk songs were taken down with relative pitch and transposed with either three-flat
key signatures (C minor key or E-flat major key) or no sharps/flats (A minor key or C major key).
These are based on two basic types of pentatonic scales called the in scale (Figure 2) and the yo
scale (Figure 3).

Figure 1: Example of a score of Chinese folk song (Xiu he bao)

3. PITCH REPRESENTATION

In order to digitize the song pieces, we generated a sequence of notes by adopting the interval
representation to each melody, not only to handle song pieces represented in absolute pitch and
relative pitch on an equal basis, but also because the interval representation is more compatible
with human perception compared to other melody representation, as people employ interval infor-



Figure 2: Example of a score written in in scale

Figure 3: Example of a score written in yo scale

mation when they memorize, distinguish, or sing a melody [7]. The details of the procedures are
as follows.

1. For a given Standard MIDI File (SMF), extract pitch information from note events and sort
S = (s1, s2, s3, · · · , sk, · · · , se) in ascending order, where element sk(k ∈ Z+) is the pitch
value for number k, and e is the number of elements in sequence S.

2. Digitize each note in terms of its relative pitch using the MIDI Tuning Standard, where the
pitch normally associated with A-5 gives the pitch 69, and then generate Σ = (σ1, σ2, σ3, · · · ,
σk, · · · , σe) where σk is the value for number k.

3. By subtracting the next value, generate a pitch sequence X = (x1, x2, x3, · · · , xt, · · · , xe−1)
that carries information about the pitch interval to the next note, where xt is the interval
for number t. Thus, an entire score is first converted into a sequence where elements are
symbolized as tones in ascending order (e.g., E-5, G-5, A-5, G-5, · · · · · ·), then each integer
is semitonically assigned to the notes (e.g., 64, 67, 69, 67, · · · · · ·), and then at last to intervals
(e.g., +3, +2, -2, · · · · · ·).

The corresponding musical intervals are listed in Table1. We treat this sequence X as a cate-
gorical time series, and fit variable-length Markov chains to construct a tree model. Note that at
the stage of constructing a tree model, we excluded the 0 intervals from the sequence X in order
to highlight the vertical transitions in pitch.



Table 1: Corresponding pitch intervals

|x| Pitch intervals
1 Augmented unison / minor second
2 Major second
3 Augmented second / minor third
4 Major third / diminished fourth
5 Perfect fourth
6 Augmented fourth / diminished fifth
7 Perfect fifth
12 Perfect octave

4. VARIABLE-LENGTH MARKOV CHAIN MODEL

4.1. Variable-Length Markov Chains

Our main method of extracting peculiar transition patterns from Japanese and Chinese folk
songs is to fit variable-length Markov chains (VLMCs) from the musical data. VLMC has its origin
in data compression within information theory. The art of VLMC modeling has been successfully
applied to the classification and identification of DNA sequences [8] in bioinformatics and coding
data compression [9] in information theory.

A variable-length Markov chain, also known as a FSMX model or a finite-memory source, is
a Markovian process having a sparse memory structure with some states that closely cohere. The
structure can be characterized by a parsimonious number of transition probabilities for stationary
categorical time series, and can be used to construct a probabilistic suffix tree-structured model.
We probabilistically created a suffix tree in modeling a variable-length Markov chain to compare
minimum transition patterns occurring with high probabilities.

4.2. Context Algorithm

In order to construct the models for both Japanese and Chinese folk songs, we used the context
algorithm. The context algorithm is a method to divide a sequence (stationary categorical time
series) X into wu, a concatenation of two contexts w and u, by measuring the differences between
P (·|wu) and P (·|w) with the Kullback-Leibler divergence [10]. In principle, the smaller the
Kullback-Leibler divergence, the closer the two probabilities. Therefore, our aim is to filter out
an optimal model that minimizes the Kullback-Leibler divergence, and to represent the estimated
minimal space.

4.3. Transition Probability

After pattern extraction, we look at the most frequent combinations for the features of each
element by calculating the estimated transition probability P̂ (x) with the chain rules of

P (x) = P (x1)
t∏

i=2

P (xi|ĉ(xi−1, xi−2, xi−3, · · · · · · , x1))

where ĉ(xi−1, xi−2, xi−3, · · · · · · , x1) is the estimated pattern from sequence X using the context
algorithm.



5. RESULTS

5.1. Frequency of the First Transition

A cumulative relative frequency diagram of the first transitions |xt| for both types of folk songs
is shown in Figure 4. The profile shows that the frequencies are extremely high in the 0 and
±2 intervals, and form a symmetric pattern taking the 0 interval as an axis in both types of folk
songs. This implies that pitch transitions occur almost equally in both descending and ascending
directions.

Figure 4: Cumulative relative frequency diagram

In order to compare the differences in the first transitions for Japanese and Chinese folk songs
in more detail, we prepared an expected contingency table with a null hypothesis and applied the
chi-square test to twelve semitones that represent approximately 99.8% of the frequency. The
results are shown in Table 2.

Table 2: Contingency table for twelve semitones

0 ± 1 ± 2 ± 3 ± 4 ± 5 ± 6
Japanese 41,130 12,431 81,789 39,453 10,477 12,253 218

folk songs ▲ 20.37% ▲ 6.16% ▲ 40.50% ▽ 19.54% ▲ 5.19% ▽ 6.07% ▲ 0.11%
Chinese 18,664 2,133 49,297 28,443 3,684 13,977 21

folk songs ▽ 15.00% ▽ 1.71% ▽ 39.63% ▲ 22.86% ▽ 2.96% ▲ 11.24% ▽ 0.02%

± 7 ± 8 ± 9 ± 10 ± 11 ± 12 Total
Japanese 2,317 381 478 455 47 511 201,940

folk songs ▽ 1.15% ▽ 0.19% ▽ 0.24% ▽ 0.23% ▲ 0.02% ▽ 0.25% 100.0%
Chinese 3,980 1,206 944 1,113 15 922 124,399

folk songs ▲ 3.20% ▲ 0.97% ▲ 0.76% ▲ 0.89% ▽ 0.01% ▲ 0.74% 100.0%

As the value of the chi-square statistic exceeds the criteria for the p = 0.01 level (d.f. = 12), we
may reject the null hypothesis. In the table, the signs▲ and▽ indicate significantly high and low
patterns, respectively. From the results of the contingency table, compared to Japanese folk songs,
Chinese folk songs have a greater tendency to reach the intervals of minor thirds (±3), perfect
fourths (±5) and above perfect fifths (±7). On the other hand, Japanese folk songs tend to take



intervals below the perfect fourth.

5.2. Overall Summary of the VLMCs

For Japanese folk songs, the maximal and the mean Markov chain depths for the data were
8 and 3.443, respectively. In the same way, for Chinese folk songs, the maximal and the mean
Markov chain depths along the data were 7 and 2.785, respectively.

Here, we look at a confusion matrix from the fitted model and calculate its accuracy as the
proportion of all predictions that were correct. A confusion matrix, a visualization tool typically
used in machine learning, contains information about predicted and actual classifications [11].
The accuracy results for the models for Japanese and Chinese folk songs are 51.97% and 45.24%,
respectively. These indicate that between approximately 45 to 50% of the musical data obey the
Markov property; however, the values were smaller than we had expected. This remains as a
matter for further research and other diagnostics need to be considered.

5.3. Estimated Structures

In this section, due to space limitations, we refer only to transitions with probabilities in excess
of 1.00% within the order-4 Markov chains rather than drawing the entire tree-structure for both
Japanese (Figure 5) and Chinese (Figure 6) folk songs.

Figure 5: Tree structure for Japanese folk songs

5.3.1. Mean Markov Chain Depths

As we compare the mean Markov chain depths considering the frequency results for the first
transitions, the minimal structures for Japanese folk songs tend to create longer schemas than for
the Chinese folk songs, and vertical transitions are sung within a small range; to be exact, below
intervals within the perfect fourth pitch. On the other hand, the minimal structures for Chinese
folk songs tend to create shorter schemas than Japanese folk songs, and vertical transitions extend



Figure 6: Tree structure for Chinese folk songs

beyond the interval of the perfect fourth pitch.

5.3.2. Patterns summing to zero

Irrespective of the country of origin, we find that most values of the estimated chains sum to
0. Although 0 intervals were excluded from the sequence X before constructing the trees, this
finding corresponds to the schema that melodic leaps are followed by progressions back to the first
note in Western music [2].

5.3.3. Patterns summing to five

We find that the values of the estimated chains also sum up to ±5, which is the interval of
the perfect fourth. For reasons of expediency, we bring in Koizumi ’s tetrachord theory [4].
Tetrachord is a unit consisting of two stable outlining tones that fill the interval of a perfect fourth,
called nuclear tones, and one unstable intermediate tone located between the nuclear tones.

In our previous study [5], we estimated from minimal data that transition patterns for tetra-
chords are salient characteristics in the melodies of Japanese folk songs. In this study, as expected,
tetrachords are a major factor in Japanese folk songs. While there were more terachords located
internally in the estimated structures of Japanese folk songs, the overall number of structures form-
ing tetrachords was lower than for Chinese folk songs.

5.3.4. Patterns summing to twelve

While the Japanese folk songs had a transition probability of 0.08% for structures with overall
intervals summing up to ±12, Chinese folk songs accounted for 2.05%. As mentioned at the be-
ginning of the paper, the Japanese people have experienced strong Chinese influences. However,
this result implies the possibility of Chinese folk songs having had a strong influence, precisely in
the sound sensation of the octave, for a fairly long time (meanwhile Japan entered an era of isola-



tion from foreign countries), from countries, such as India and Europe, where a strong perceptual
similarity exists between tones consisting of the perfect octave interval [12].
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