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ABSTRACT

This paper considers new models from Psychology and Marketing that extend the general Kan-
sei approach. We sketch a framework that views design as understanding (1) the consumer’s
representation of the product space, (2) the consumer’s choice function, (3) the designer’s repre-
sentation of the design space, (4) the designer’s choice function, and a connection between those
four properties. This framework helps organize some existing methods and points to areas ripe for
development of new models.
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1. INTRODUCTION

Kansei methodology provides a scientific basis for relating user-defined characteristics to engi-
neering variables. The ability to convert user-defined concepts to concrete engineering attributes
is an important aspect of any analytic design process that uses inputs from the end-user in a quan-
titative way. Kansei engineering uses several techniques from the social sciences and statistics,
including multidimensional scaling (MDS), the semantic differential procedure and advanced re-
gression techniques. In this paper, we bring modern methods from the social sciences, such as
discrete choice models and mixture models, and methods from engineering, such as functional de-
pendence table analysis, to relate user-defined characteristics to engineering attributes. We show
how Kansei and related methods can model consumer choice and heterogeneity across consumers.

Traditional Kansei methodology has focused on the semantic differential procedure, which is
an important tool from psychology for understanding meaning and concepts as defined by users.
The typical analysis of semantic differential data uses techniques such as linear regression and
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factor analysis. Heterogeneity, allowing for variability across consumer or consumer segments,
can be incorporated into the analysis by assigning consumers different values (e.g., this could be
accomplished through random effect terms in a regression, random effect terms in the weights of
an individual difference multidimensional scaling, or random effects terms for ideal points in mul-
tidimensional unfolding models). However, those techniques assume that meaning and concepts
comprise a dimensional space. Modern psychological research has challenged this dimensional
assumption and has suggested that semantic domains are represented better by tree structures,
which impose a different structure on the data set. We briefly review tree structures, including tree
models that allow for heterogeneity, and discuss their applicability in a Kansei approach.

It is important to relate both user concepts and engineering attributes to consumer choice. A
consumer may be satisfied that the product design meets their concept, but the key business ques-
tion is whether that individual will choose the product over other available products. Other at-
tributes such as price, budget constraints, and variability of choice will factor into an individual’s
choice, which should be considered in the firm’s decision to pursue the project (e.g., if manufactur-
ing costs make the product too expensive for consumer’s budget constraints, then even a product
that meets Kansei criteria may not be profitable to bring to market). This suggests the need for
richer models that incorporate additional information into product design and a firm’s decision
making. We show how to use a discrete choice model to relate user concepts about perceived
environmental friendliness of vehicles to engineering in a manner that uses consumer choice in-
formation.

The link between product characteristics and engineering attributes can be improved through
techniques such as functional dependence table analysis. This technique helps to reduce the di-
mensionality of the characteristics × attributes matrix to identify the underlying structure of the
design problem. The merger of subjective data with functional dependence table analysis provides
an opportunity to develop new methods for model-based interdisciplinary design, an approach that
connects user concepts, product characteristics, engineering attributes, and consumer choice. In
this paper we review this general approach and discuss an example modeling user perception of
vehicle craftsmanship that connects user perception to engineering attributes.

2. DEVELOPING A FORMAL REPRESENTATION: THE CHOICE FUNCTION FRAME-
WORK

There are at least two choice models to consider in design: the consumer’s choice of product
and the designer’s choice of design. The designer decides which designs to bring forward; the
consumer decides which product to purchase. The key design research problem is to understand
how the designer creates and chooses designs that will produce market share for the firm. Thus,
the fundamental problem in design is to find the relation between two choice models: the designer
chooses a design that she believes the consumer will likely choose. The design space is typically
represented differently than the product space. A feature in design space (e.g., torque ratio) may
not directly correspond to a feature in product space (e.g., vehicle sportiness), and vice versa. The
designer considers design features and attributes, the consumer considers product features and
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attributes. Further, the dimensionality of the design space may not correspond to the dimension-
ality of the product space. The consumer may consider additional properties not present in the
design space and not computable from the design features; the designer may consider features and
attributes that are not considered by the consumer.

 

Figure 1: Fundamental Design Problem. How to link the designer’s choices and their represen-
tation of the design space D with the consumer’s choices and their representation of the product
space P ?

Choice models for the consumer are based on representing binary relations. For example, the
choice of product a over b is represented with a binary relation a � b endowed with particular
properties such as transitivity. Behavioral decision theory models the binary relation� using vari-
ous formalisms, such as discrete choice models, multiattribute utility theory, preference maps, and
unfolding models. Each of these models use continuous functions to represent the choice relation,
thus are easier to work with when making predictions, or embedding into other frameworks such
as the optimization models used in engineering design.

Formalism will provide clarity to the problem. We make use of theoretical results by Wakker
[1] showing the connection between a choice function and a binary relation. A designer explores
a design space D, which we consider as the set of feasible designs given the constraints of the
problem. Likewise, the consumer considers a product space P , the set of possible products from
which the consumer will choose given the consumer’s constraints. The choice function C() selects
points in the set that is supplied as an argument. The designer’s choice Cd(D) is a subset of D. The
designer is indifferent between the elements of the subset Cd(D). Likewise, the consumer’s choice
is a subset Cc(P ) of the product set P , and the consumer is indifferent between the elements of
C(P ). The choice function C() may return a point, that is, only one item is chosen. We subscript
the choice function C with either d or c to indicate that the choice function used by the designer
or the consumer, respectively, may differ; that is, the designer may follow a different preference
relation than the consumer. A different preference relation means the designer and the consumer
have different indifference curves in their respective design or product spaces or that their binary
relation may have different properties such as one may be transitive and the other not.

More structure can be added to this basic choice function framework. For example, rather than
choosing from the design space D or product space P directly, the choice function C could operate
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on the set of “choice situations”, i.e., choice objects are chosen in a context such as choosing one
option from the subset {a, b, c} from D or choosing from the subset {a, b, e, f, “no choice”} in D.
Thus, a choice situation S is an element of 2D (S ∈ 2D) and the choice function C is a mapping
from S to 2D. The superscript denotes the dimensionality of the respective space. One can impose
constraints on the possible choice situations, which will be useful when an optimization framework
is considered. Under standard regularity conditions, such as a nonempty set, Wakker [1] proved
that the usual binary relation � one sees in the choice literature (a is preferred or indifferent to b)
represents the choice function C.

One benefit of this formalism is that it provides some structure and understanding for the role
of different data analytic techniques that have been proposed in Kansei engineering and other re-
lated methods that use social science techniques. For example, the following techniques provide
information about the product space P : factor analysis of the semantic differential scale, multi-
dimensional scaling of products and clustering of products. To make this point more concrete,
we can impose more structure on the product set P and define it as the Cartesian product of k
attributes. That is, the product set P can be formalized as a Cartesian product of k attributes
A1 × A2 × . . . × Ak, so an element of product set P can be described in terms of the values on
each of the attributes A1 to Ak. Techniques such as factor analysis, principal components analysis
(PCA), clustering and MDS are helpful at providing empirically-derived attributes, especially in
subjective domains where there may not be a priori theory or knowledge to guide the researcher in
well-defined attributes. This choice function framework shows that multivariate techniques such
as factor analysis, MDS, PCA and clustering can inform us about the structure of product set P .
Further, the choice function framework shows that MDS, PCA and clustering do not tell us a key
piece of information–what will people choose? These techniques tell us about the structure of the
product space P but do not inform us about the choice function Cc(P ), which is a key limitation of
those “off the shelf” statistical techniques. Our reading of the literature is that Kansei is concerned
with understanding the structure of the product space P as well as the choice function C(P ), but it
is this later concern about the consumer’s choice function that we believe still requires additional
research since it is missing from techniques such as the semantic differential. Some multivariate
techniques such as unfolding models attempt to model both the space of objects as well as the
choice function on the objects. For a recent attempt at modeling choice and preference from a
Kansei approach using rough set theory see [2].

The choice function framework illuminates the role of various discrete choice models (used
in marketing, decision making and some areas of engineering) that are currently used in design
research. Using the product set A1×A2× . . .×Ak and making additional assumptions about the
structure of the choice function C, one can derive, say, the logit choice model. Here the utility of
an element of the product set P , called p, is modeled as an additive combination of the attribute
utilities

u(p) = u1(a1) + u2(a2) + . . .+ uk(ak)

where the utility of the product p is defined as an additive combination of attribute-wise utilities.
The utility u(p), defined on the real line for a single product, can be construed as the value assigned
to the product p. This additive utility function imposes requirements on the binary choice relation
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� such as monotonicity in each attribute. This additive utility is then transformed to a “choice
probability” (i.e., utility is transformed to the closed 0,1 interval) using the following formula over
the subset of products under consideration

Prob(p) =
exp(u(p))∑

(u(pi))

In the context of the present choice function framework, the logit model provides one definition of
the choice function C.

An important observation is that the attribute structure of the product space must already be
known in order to apply the logit model. We need to know the attributes in advance to estimate
the utilities, or part-worths. This is implicit, for instance, when one performs a conjoint analysis
to estimate the parameters of the logit model–it is necessary to have the attributes defined in ad-
vance to manipulate their values in the context of a conjoint survey and its associated experimental
design. Thus, there is an opportunity to develop new choice models that simultaneously estimate
the dimensions of the product space P , and estimate the choice function Cp(P ), for designs that
don’t currently exist. A good potential technique is a variant of PREFMAP [3] but many other
approaches are possible.

The discrete choice literature has recently been concerned with heterogeneity. This allows for
consumers to have different utility functions. In the present formalism, heterogeneity in the choice
model amounts to having unique choice functions for each consumer, or Cc

p(P ). The superscript c
on the function C denotes that one consumer c may follow a different choice function than another
consumer. Of course, there are subtleties about whether the variability across consumers is defined
in terms of the structural model of the consumer (such as different utility functions on a particular
attribute, which is considered an individual difference on the systematic part of choice) or defined
in terms of random effects (such as a stochastic term that produces individual differences). For
our purposes, the distinction between structural and stochastic is immaterial because both lead to
the same modeling outcome of superscripting the choice function C by the consumer c. Different
versions of discrete choice models can allow for complete heterogeneity (each consumer has his
or her own unique choice function) or can define subsets of consumers (or what are called latent
classes or segments or mixture models where individuals within the segment are modeled as having
identical estimates but heterogeneity is permitted across a finite number of classes). Intuitively,
one can view a random effects discrete choice model as the limiting case of a latent class model
where each class contains a single consumer. The general choice function framework presented
here is not limited to the heterogeneous logit choice model–the framework can invoke any model
that represents the consumer’s product choice C(P ).

There has been an attempt in the psychology and marketing literature to develop techniques that
simultaneously assess the structure of the product set P and the choice function C(P ). One such
model is PREFMAP, which merges a multidimensional scaling approach with a choice model.
Another is the general class of unfolding models that model simultaneously both the dimensional
structure of the product set P and the choice function C(P ), e.g., [4]. Extensions of unfolding
models that permit heterogeneity have been proposed and are currently in development. Overall,
these models that attempt a simultaneous estimation of P and C(P ) are difficult problems and
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much work is needed to develop better algorithms. Thus, a major area of research is understanding
the connection between the product space P and the choice function C(P ). Kansei ideas can
continue to play a role in facilitating answers to these important questions.

2.1. Kansei Engineering: Linking Consumer and Designer Choice

Kansei uses techniques to understand the attributes and dimensionality of how products are rep-
resented, with the hope of connecting that information to the design process. In traditional Kansei
there is an attempt to assess both the subjective attributes of a product and its objective properties.
An example is from Tanouet, Ishazaka and Nagamachi [5], who performed a Kansei engineering
analysis on the interior of a vehicle. Participants were shown the interiors of 20 vehicles (sedans
and coupes) and asked to respond to a semantic differential scale. This type of scaling uses a
factor analytic technique to reduce the dimensionality of the data. The resulting dimensions then
need to be interpreted. Correlations with objective measures provide one way to define the factors
that emerge from the statistical analysis. For example, if the data reduction suggests a dimension
of “roominess” from the semantic differential data collection, then objective measurements of the
interior can be correlated with the subjective factor that emerges from the factor analysis. It is
necessary to test with objective data the interpretation of the factors or dimensions, otherwise the
dimensions remain subjective, vague and poorly defined.

Kansei is a systematic method to relate (a) the subjective attributes that emerge from a di-
mensional reduction of rating scale data and (b) the more objective design variables that can be
measured. For example, in a vehicle interior one can measure distances, or quantify the shape of
the instrument panel and the size of the instrument cluster. This method is good at identifying the
dimensions that a consumer may use to classify and comprehend the differences across existing
products. But connected to the choice function framework introduced in the previous section these
advances reside mostly in our understanding of the product space P . The traditional Kansei view
addresses primarily (but not exclusively) the question: How does a consumer represent the prod-
ucts and what are the design features of those products? Kansei, in the published literature at least,
focuses less on the question: Which product does the customer choose?

While Kansei engineering has made many contributions to the engineering design literature,
there remain two main areas that still require more attention in order to realize Kansei’s full poten-
tial. One issue is to expand the approach to identify underlying dimensions that guide a consumer’s
perception and that links to choice C(P ). A consumer may use “perceived roominess” of a vehicle
interior as one dimension to categorize the vehicles that are presented in a Kansei study, but the
question that matters at the end of the day is which vehicle the consumer chooses to purchase.
Due to budget constraints, vehicle storage constraints, transportation and hauling requirements, or
any number of other concerns, the consumer may choose a vehicle using a choice procedure that
is not necessarily guided by their perceptions of roominess. Techniques such as PREFMAP and
unfolding analysis will be helpful in addressing this choice problem and the representation of the
consumer product space. Thus, they will be useful tools to add to the Kansei toolbox.

The second issue is that the semantic differential as it is typically used in an engineering design
context is limited if one seeks information about new designs. One typically performs a semantic
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differential on products that currently exist, or perhaps new products can be shown as sketches
or described verbally as a set of features. Is the consumer’s thinking, or “sensing,” limited by
presentation of existing products in a semantic differential? Is the consumer’s conceptualization in
terms of possible functions and uses of the product limited by the semantic differential procedure?

An analogous limitation occurs at the level of the designer as well. The designer seeks to find
new attributes that have yet to be considered, search new regions of the design space D, push the
envelope on possible new functions of the design, etc. Is the designer constrained by examining
the perceived dimensions of existing products? Is the designer’s search constrained when using
data from a traditional semantic differential procedure?

There is a need for the creation of tools that allow the measurement of the product space P

and the choice C(P ) in a manner that can be linked to the search of the design space D so the
designer can select optimal designs C(D). Ideally, the method would work in real time so that the
consumer’s product space P and the designer’s design space D, as well as their respective choice
functions C(), can be simultaneously explored. For instance, a set of designs could be generated
and presented to the consumer for evaluation. Then, subjective data from the consumer could be
collected and analyzed, with that information used to search the design space D to produce new
designs. The process iterates until the designer understands the design and product spaces and also
understands the consumer’s choice function. Of course, the choice of the designer C(D) could
be formulated as an optimization problem under a set of constraints. An analogous method was
described by Nagamachi [6].

3. ILLUSTRATIONS OF CONSIDERING BOTH DESIGN AND PRODUCT SPACE

In our own design science research we have used two additional procedures for simultaneously
exploring the product and design spaces. One method uses a genetic algorithm to present stimuli
to consumers. In one toy demonstration using bottle shape, a doctoral student Jarod Kelley [7],
developed an algorithm defined in terms of physical dimensions along with some constraints re-
lated to feasible designs (such as the bottle has to have a sufficiently wide base to remain upright);
that is, it is defined with respect to design space D. The algorithm displays these designs to the
consumer in the form of visible bottle shapes (product space P ). Through a series of repeated pre-
sentations the genetic algorithm identifies the properties of the consumer’s choice function C(P ).
Given that the algorithm has also defined these shapes in terms of the design space D, the end
result of the consumer’s choices C(P ) is understood immediately in terms of the characteristics
of the design space D.

In a second attempt at making the link between P , C(P ), D and C(D), we developed a web-
based survey methodology that can be used to present products to consumers to assess their choice
C(P ) in a form that relates back to the engineer’s design variables [8]. The demonstration of this
technique involved 2-dimensional vehicle silhouettes. A design of experiments using engineering
control points created a set of candidate designs that was represented as two dimensional vehicle
silhouettes to potential consumers in the context of a web-based survey. The data were used to
generate new candidate designs predicted to be more preferred than those designs in the original
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web-based survey. Those new designs were then presented to consumers to validate that they
were indeed more preferred designs, or rated higher on particular dimensions such as “perceived
environmental friendliness”, than the designs in the original set. This research showed that it
is possible to take a new attribute such as “perceived environmental friendliness,” which is not
currently well-defined in terms of objective criteria, collect specialized data from consumers, relate
the consumer’s subjective data to engineering variables to create new designs, and link that to the
stated preferences of the consumer.

In all data analytic techniques one needs to ensure that the assumptions of the model one uses
are consistent with the phenomenon one is modeling. So far in this paper we have characterized
the prototypic case of using the semantic differential and factor analysis. There are other analytic
techniques depending on whether the data are qualitative and there are different categorization
frameworks such as the Kohonen self-organizing map (see [5] for examples). Our point is that
matching the analytic technique to one’s type of data is one step in the right direction, but there is
an even more important step—matching the assumptions of the technique with the phenomenon
being modeled. Most factor analytic and classification techniques rely on some notion of distance.
The assumption is that there is a psychological metric space in which products are represented
as points. Techniques such as PCA, factor analysis, and multidimensional scaling each assume
a particular metric, usually Euclidean distance, though other metrics are possible. The use of a
distance metric makes assumptions such as symmetry (the perceived distance between product A
and B is the same as the perceived distance between product B and A) and the triangle inequality
(the distance between A and B is constrained by the distance of A and C and the distance between
B and C).

There is much evidence in the psychological literature that such assumptions do not hold, es-
pecially with semantic dimensions [9]. Similarity judgments are frequently asymmetric: the sim-
ilarity of the father to the son is not the same as the similarity of the son to the father. It appears
that some domains such as color are consistent with the metric assumptions, but domains that are
categorical or semantic tend to violate the metric assumptions. New techniques that do not make
the standard metric assumptions have been proposed. In one of the more well-known versions,
similarity is defined with respect to a weighted combination of feature sets. Each product has a set
of features. The similarity of product A to B is represented as a weighted combination of features
unique to A, features unique to B, and features common to both A and B. The weights on each of
those subsets of features allows for additional psychological effects such as emphasis on common
features versus distinctive features (such as when one asks a “how different are these products from
each other” versus a “how similar are these products to each other” question). This method can be
represented using an additive tree clustering structure as opposed to the more common hierarchical
clustering method [10].

It is important to check the assumptions of one’s models. Standard models used with behav-
ioral data make many assumptions that are important not only for making statistical inferences
(including estimating parameters, confidence intervals and statistical tests), but also because the
assumptions frequently have substantive implications. If data suggest that consumers’ violate sym-
metry, then it is not possible to use modeling methods that invoke a distance representation (such
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as factor analytic techniques) and more importantly it opens the door to explore to new models of
how consumers represent the product space.

4. CONNECTING THE SUBJECTIVE WITH THE OBJECTIVE

The issue of the underlying assumptions of the analytic model and its relation to the phe-
nomenon under investigation is an important aspect of any model of consumer choice and en-
gineering design. Some Kansei researchers have used clustering techniques in their analysis. For
example, [11] and [12], who describe a clustering method used to design a roadster for Mazda.
They claimed that “[t]his Kansei engineering method is very effective and efficient to find out the
relationship between customer’s Kansei and product design specification” (p. 764). But how does
one move from the language of the customer to the language of the designer (space P to space
D)? How does one convert the language of the consumer into actual design variables with a clear
direction of what needs to be done in the design to meet the consumer’s needs and preferences [6]?
An example used in the Kansei literature [6] is one of hair care products where Kansei techniques
suggest a particular desire among female consumers to have the hair product make them “feel like
a queen.” This may be useful information by itself but what is the designer supposed to do with
this information from the consumer? What design attributes should be examined or added in order
to produce such a feature in the product? Is this too vague to be useful in design? Will different
designers interpret this information in different ways? Is there an analytic procedure that can facil-
itate the connection to design variables? How should the subjective statement “feel like a queen”
be operationalized in the context of an analytic engineering design problem?

A recent paper examined the subjective and vague category of “craftsmanship” [13]. The re-
search showed that, using an industry-based tool to assess craftsmanship, there was little agree-
ment across raters of vehicle interiors and there were no interpretable dimensions or clusters that
emerged using MDS and clustering analyses on these perception variables. We developed a more
concrete set of attributes to rate the craftsmanship of vehicle interiors. This set followed from
a functional dependence table analysis linking objective design characteristics (such as gap size,
drop angle of glovebox lid, compressibility of components) to perceived attributes such as stitch-
ing quality, material sound response, and usability of glovebox. A functional dependence table
contains binary entries in each cell, with rows indicating perceived attributes and columns indicat-
ing design characteristics. An entry of 1 in cell i,j indicates that the characteristic j is relevant to
attribute i. This binary matrix can be partitioned. We were able to achieve acceptable cross-rater
agreement in the evaluation of craftsmanship using the newer list of clearly defined attributes. Fur-
ther, the attributes (described in product space P ) were linked directly to design attributes (which
were described in design space D), providing a link between what the consumer wants and a list
of attributes the designer can use.

5. DISCUSSION

The Kansei approach has already contributed much to our understanding of engineering design,
the user experience and how to link the two. But we believe that major contributions from this
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approach are still to come. We provided some possible new directions for analytic tools and some
suggestions for directions one can take for adding more tools to the Kansei toolbox. These tools
rely on new developments in the social sciences that provide more realistic models of customer
preference and customer perception.
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