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ABSTRACT 

A technique commonly used in Kansei Engineering to map affective responses to physical 
properties of products is to administer a semantic differential questionnaire and analyze the 
results using multivariate regression.  A widely acknowledged problem with this approach is 
that the statistical analysis techniques are not permissible for the non-linear, ordinal data 
produced by the scales.  To address this limitation, this research assesses the use of Adaptive 
Neuro-Fuzzy Inference Systems (ANFIS) to simulate and analyze the mapping between the 
physical properties of tactile textures and people’s affective responses.  Eighteen people were 
asked to rate the tactile feel of thirty seven textures against six pairs of adjectives on a 
semantic differential questionnaire.  The friction coefficient, average roughness and a thermal 
parameter of each surface texture were measured.  Using collected data, ANFIS models were 
built to predict the affective responses to tactile surface textures.  The resulting ANFIS 
models always yielded lower errors when compared to regression models and demonstrated a 
good match between predicted and actual responses.  The use of ANFIS models could 
provide more insightful information than traditional statistical analysis techniques for 
product designers, in the form of 2D and 3D data plots of affective response, or in the form 
of fuzzy rules.  
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1. INTRODUCTION 

Affective Engineering is concerned with measuring people’s subjective responses to 
products, identifying the properties of the products to which they are responding, and then 
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using the information to improve the design. Affective Engineering is a westernized approach 
to Kansei Engineering which has been pioneered by Nagamachi in Japan since the 1970s 
(Nagamachi 1995). 

The most commonly used approach in affective engineering is to identify adjectives that 
consumers use to describe the product and embody them into a self-report, semantic 
differential questionnaire (Osgood et al., 1957). A representative sample of consumers is then 
asked to rate the degree to which each word describes a range of products. The responses to 
the questionnaires are turned into a measure of affective response using multivariate 
regression techniques. This process creates quantitative semantic spaces tailored to the 
specific context of the products being investigated, against which to regress measures of the 
physical properties or features of the products (see for example (Henson et al. 2006)). 

While this approach is useful for analysis, it does not sufficiently capture the dependencies 
between product properties to allow the prediction of people’s reactions to new products, and 
the validity of the measurements produced by this process can be disputed for a wide variety 
of reasons.  While not addressing all of the issues, the use of fuzzy or symbolic reasoning 
available with artificial intelligence techniques is an approach worth exploring to improve the 
validity of measurements (Nagamachi 2006) and for prediction of people’s responses. 

In the last five years or so, the use of artificial intelligences techniques to map affective 
responses to design features in affective engineering has emerged as a substantial research 
area. There have been examples of the use of artificial intelligence techniques in affective 
design using fuzzy rule based models (Park and Han, 2004; Hotto and Hagiwara, 2006; Lin 
et al., 2007), rough sets (Yanagisawa and Fukuda, 2005; Nishino et al., 2006; Zhai et al., 
2007) and neural networks (Hsiao and Huang, 2002; Lai et al., 2006; Chen et al., 2006).  

In this study, Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed to simulate 
and analyze the mapping relation between the physical properties of products (in this case 
tactile surface textures) and people’s affective responses. ANFIS was chosen because it 
combines the advantages of being a fuzzy inference system and an adaptive neural network 
(Jang et al., 1997).  

Section 2 explains the theory of ANFIS in detail. Section 3.1 describes the experimental 
method of the collection of people’s affective responses to tactile surface textures, and Section 
3.2 explains how the ANFIS model was trained and the results are presented in Section 4. 

2. THEORY 

2.1. Adaptive Neuro-Fuzzy Inference System (ANFIS) 
A fuzzy inference system (FIS) implements a nonlinear mapping from an input space to an 

output space by a number of fuzzy rules constructed from human knowledge.  While many 
expert systems need a rule base, neuron-fuzzy systems use artificial neural networks (ANNs) 
to identify fuzzy rules and tune the parameters of membership functions in FIS 
automatically. In this way, the need for the expert knowledge is eliminated. There are several 
approaches to integrate ANNs and FISs depending on the application type (Nauck et al., 



 

 

1997). A specific approach in neuro-fuzzy systems is ANFIS which is a Sugeno type FIS 
implemented in the framework of adaptive neural networks (Jang, 1993).  

The ANFIS architecture is depicted in Figure 1. An example with two inputs (x1 and x2) 
each having two fuzzy levels is given. It has five layers where nodes in each layer have 
different functionality. A circle indicates a fixed node whereas a square indicates an adaptive 
node whose parameters are changed during the training process.  The first order Sugeno type 
fuzzy rules are then as follows.  For a FIS with two inputs (x1 and x2) and one output (y) and 
where each input is assumed to have two fuzzy sets (Wang and Elhag, 2008). 

Rule 1: If (x1 is A1) and (x2 is B1) then f11=p11x1+q11x2+r11 

Rule 2: If (x1 is A1) and (x2 is B2) then f12=p12x1+q12x2+r12 

Rule 3: If (x1 is A2) and (x2 is B1) then f21=p21x1+q21x2+r21 

Rule 4: If (x1 is A2) and (x2 is B2) then f22=p22x1+q22x2+r22 

In Sugeno fuzzy rules, the parameters, pij, qij, and rij are determined during the training 
phase of ANFIS. 

Layers 1 and 4 are adaptive.  Adjustable parameters in Layer 1 describe the shape of the 
membership functions and are referred to as premise parameters.  The adjustable parameters 
in Layer 4 related to the first order polynomials are called consequent parameters. The task 
of ANFIS in learning is to tune the premise and consequent parameters until the desired 
input-output mapping from the FIS is achieved. This learning task is accomplished by a 
hybrid algorithm combining the least squares method and the gradient descent method 
(Jang, 1993). The hybrid algorithm is composed of a forward pass and a backward pass. In 
the forward pass of the algorithm, while the premise parameters are held fixed, functional 
signals go forward to Layer 4 and then the consequent parameters are determined by the 
least squares method. In the backward pass, while consequent parameters are held fixed, the 
error measure propagates backwards and the premise parameters are updated by the 
gradient descent method to adjust the membership functions. 

 

Figure 1:   ANFIS architecture 



 

 

3. APPLICATION OF ANFIS TO THE AFFECTIVE DESIGN OF 
SURFACE TEXTURES 

Eighteen participants (12 males and 6 females), aged from 20 to 60 years, participated in 
the experiment. Thirty-seven materials with different textures were used as stimuli.  Stimuli 
1-22 were cardboards;  23-31 were papers and foils; and stimuli 32-37 were laminate boards.  
The cardboards, papers and foils were packaging materials used for confectionery. The 
laminate boards were samples of materials typically used for making office furniture and 
were included to increase the variety of textures. As a result, the 37 stimuli covered a variety 
of textures with different physical properties, such as roughness, hardness and thermal 
conductivity.  The stimuli were cut into 10cm ! 8cm rectangles and were numbered for 
identification. 

The stimuli were presented to the participants in boxes so that they could not be seen.  
One side of each box was kept open and covered with a small white curtain to prevent sight 
of the stimuli whilst still allowing participants to touch them.  Each participant was asked to 
place their hands into the box under the white curtain and touch one texture at a time. The 
stimuli were presented in a random order. No restrictions were given as to which hands or 
parts of the hand could be used, or for how long the stimuli could be inspected. After 
touching each stimulus, the participants rated the tactile properties of the stimuli against six 
pairs of adjectives. The adjectives were “slippery- sticky”, “bumpy-flat”, “wet-dry”, “hard-
soft”, “smooth-rough” and “warm-cold” on a 20 point semantic differential scale.  

The friction coefficient (µ), average roughness, (Ra), a thermal property, rate of cooling on 
touching (dT/dt) and compliance (c) of the thirty-seven surfaces were measured.  Roughness 
was measured using a commercial stylus surface profilometer (RTH Form Talysurf 120L).  
Friction coefficients, rate of cooling on touching (dT/dt) and compliance were measured on a 
piezo-electric force platform (Kistler MiniDyn). For the friction measurement, each stimulus 
was fixed to the force platform.  An experimenter pressed (load Fy) and slid (load Fx) her 
finger tip against it. Fx and Fy were recorded against time. The friction coefficient was 
obtained from Fx/Fy. Loads Fy were in the range 0.5 to 3N. 

To measure the rate of cooling of the finger when the stimulus is touched, an artificial, 
polymer fingertip was loaded on to the surface, without sliding (Fy = 1 N).  A thermocouple 
(TC) was embedded just within the tip. Before contacting the surface, the tip was heated by 
an internal cartridge heater to the temperature of the skin of the human finger, 32 ± 0.2°C. 
On contact between the loaded finger and the stimulus, the fall of the temperature recorded 
by the thermocouple against time was recorded. The maximum rate of change (°Cs-1), which 
occurred at the start of contact, was taken as the measure of the rate of cooling. 

Compliance was measured by inserting a soft rubber support between the stimulus and the 
force platform.  The stimulus was pressed with a steel ball of radius 7mm. With 4N loading 
force, the ball’s displacement with increasing load was recorded. The measure of compliance 
was empirically taken to be the value of the displacement (mm) when Fy= 3N.  In all cases, 
measurements were repeated several times and averages obtained. 

 



 

 

3.2. Implementation of the ANFIS models 

The aim of the ANFIS was to model and predict the affective response to texture as a 
function of µ, Ra, dT/dt and c.  To do this, six separate ANFIS model were built, one for each 
of the six adjective words.  In each ANFIS model, µ, Ra, dT/dt and c were taken as the input, 
and the mean average response to a particular adjective word pair was used as the output. 
Generalized bell membership function was used to define fuzzy levels, because of its 
smoothness and concise notation. The total number of rules in the structure is 16.  

The data for one stimulus were removed during preliminary training runs of ANFIS 
because it had a negative effect on the performance of the model. The removed sample felt 
qualitatively different from the other stimuli with an incongruent rough, metallic feel.   

The ANFIS models were implemented using MATLAB Version 7.3 with the Fuzzy Logic 
Toolbox.  A hybrid learning algorithm was used. Structure parameters, such as number of 
epochs and learning rate were determined by trial and error by carrying out preliminary 
runs. The different ANFIS models were evaluated and the results of the best ANFIS models 
were presented. 

K-fold cross-validation (Stone, 1974) was used to train and validate the ANFIS models.  
To assess the performance of ANFIS models, Mean Absolute Percent Error (MAPE), and 
correlation coefficient (R) criteria were used.  The smaller the MAPE values, the better the 
performance. A value of MAPE of less than 10% is regarded as excellent. MAPE is used to 
determine when to stop training: training is stopped when the MAPE error for test set starts 
to increase, indicating that a minimum have been achieved.  

The Pearson product-moment correlation coefficient (R) was used to measure how well 
the variation in the predicted outputs is explained by observed values.  Threshold statistic 
(TS) is used to provide information on the distribution of errors.   

4. RESULTS AND DISCUSSIONS 

The performances of the optimized ANFIS models are presented in Table 1.  Satisfactory 
results were achieved for “wet-dry”, “hard-soft”, “warm-cold”, and “slippery-sticky” 
adjectives.  MAPE values of these four models were lower than 10%, indicating that the 
relation between physical characteristics of textures and each of these four adjective word 
pairs is highly significant.  On the other hand, no strong relations were observed for “bumpy-
flat” or “smooth-rough” adjective pairs. 

The MAPE values indicate that the ANFIS models always yielded lower errors when 
compared to regression models.  High error values were observed for “bumpy-flat” and 
“smooth-rough” adjective pairs in both the linear and exponential regression models.  While 
the performance of the exponential model for “smooth-rough” is very close to that of the 
ANFIS model, it is too high to be significant.  

 



 

 

Table 1:  Training and test performance of ANFIS models 

ANFIS* 

Regression* 
(Linear) 

Regression* 
(Exponential) 

Model for 
MAPE 
(training) 

MAPE 
(test) 

MAPE 
(test) 

MAPE 
(test) 

Slippery –Sticky 0.09 10.05 15.00 15.51 

Bumpy-Flat 0.28 19.83 31.25 33.48 

Wet-Dry 0.03 3.61 6.85 6.88 

Hard-Soft 0.07 5.80 11.16 12.85 

Smooth-Rough 0.39 35.50 46.07 35.76 

Warm-Cold 0.09 6.40 11.85 10.50 

                     * 9 fold cross-validation is applied. 

 

Figure 2 shows the predicted outputs of the six ANFIS models against their actual 
responses.  High correlations between actual and predicted values were observed for the 
models for “slippery-sticky”, “wet-dry”, “hard-soft” and “warm-cold”.   

The ANFIS did not achieve satisfactory results for “bumpy-flat” and “smooth-rough” 
adjective word pairs.  The reasons for this can be twofold. First, participants might have had 
more difficulty evaluating against these words. It is noted that variances of responses to 
“bumpy-flat” and “smooth-rough” are higher than those 
 

  



 

 

  

  

Figure 2:  Scatter diagrams showing actual and predicted responses (for test set) 



 

 

 

Figure 3:  Main effects plots between µ, Ra, rate dT/dt and affective responses. 



 

 

of other adjective word pairs. Significant differences between participants’ 
evaluation score for the stimuli whose physical parameters are similar might have negative 
impact on ANFIS’s robustness.  Second, some of the physical characteristics of the surface 
texture might be irrelevant for modelling “bumpy-flat” and “smooth-rough” adjective word 
pairs.  

Main effects plots between µ, Ra, rate dT/dt and affective responses are shown in Figure 3.  
The four physical characteristics are positive and highly significant for the “slippery-sticky” 
response.   The relationship between µ and “wet-dry” response was not significant.  Ra, dT/dt 
and c are highly significant for the “hard-soft” response. µ seems not to have significant 
effect.  dT/dt is the only significant factor on the response “warm-cold.  

Most of the stimuli used in this experiment were examples of packaging materials used for 
confectionery. It is likely therefore that, although the stimuli were not presented to 
participants in the context of confectionery, the results of this experiment can be generalized 
and used to predict human responses to confectionery packaging materials. Whether the 
results can be generalized further, for example to materials with similar ranges of physical 
properties, cannot yet be determined, because the effect of context on people’s perceptions of 
products is not yet fully understood. 

The use of ANFIS is a first step in using soft computing techniques for the analysis of 
affective responses to tactile surface textures. Through further iterations, it will be possible to 
choose a more comprehensive range of stimulus materials that is representative of the human 
experience of touch. 

5. CONCLUSIONS 

In this study, ANFIS was used to simulate and analyze the relation between the tactile 
surface textures and people’s affective responses. This study has shown that soft computing 
tools may be more useful than regression analysis for modelling nonlinear affective response 
to surface textures.   It has been demonstrated that ANFIS can be used as a reliable tool to 
predict affective responses to a particular surface texture. 
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